21 resultados para track and field
Resumo:
This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.
Resumo:
Understanding the impact of ocean acidification and warming on communities and ecosystems is a researcher priority. This can only be achieved through a combination of experimental and field approaches that would allow developing a mechanistic understanding of impacts across level of biological organizations. Surprisingly, most published studies are still focusing on single species responses with little consideration for interspecific interactions. In this study, the impacts of a 3 days exposure to three parameters (temperature, pH, and presence/absence of the predator cue of the crab Charybdis japonica) and their interactions on an ecologically important endpoint were evaluated: the byssus production of the mussel Mytilus coruscus. Tested temperatures (25°C and 30°C) were within the present range of natural variability whereas pH (8.1, 7.7, and 7.4) covered present as well as near-future natural variability. As expected, the presence of the crab cue induced an antipredator response in Mytilus coruscus (significant 10% increase in byssus secretion rate, 22% increase in frequency of shed byssus, and 30% longer byssus). Decreased pH but not temperature had a significant negative impact on the same endpoints (up to a 17% decrease in byssus secretion rate, 40% decrease in frequency of shed byssus, and 10% shorter byssus at pH 7.3 as compared with pH 8.1) with no significant interactions between the three tested parameters. In this study, it has been hypothesized that pH and predator cue have different modes of action and lead to conflicting functional responses (escape response versus stronger attachment). Functional consequences for ecosystem dynamics still need to be investigated.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
We present geochemical data of black smoker particulates filtered from hydrothermal fluids with seawater-dilutions ranging from 0-99%. Results indicate the dominance of sulphide minerals (Fe, Cu, and Zn sulphides) in all samples taken at different hydrothermal sites on the Mid-Atlantic Ridge. Pronounced differences in the geochemistry of the particles between Logatchev I and 5°S hydrothermal fields could be attributed to differences in fluid chemistry. Lower metal/sulphur ratios (Me/H2S < 1) compared to Logatchev I result in a larger amount of particles precipitated per liter fluid and the occurrence of elemental sulphur at 5°S, while at Logatchev I Fe oxides occur in larger amounts. Systematic trends with dilution degree of the fluid include the precipitation of large amounts of Cu sulphides at a low dilution and a pronounced drop with increasing dilution. Moreover, Fe (sulphides or oxides) precipitation increases with dilution of the vent fluid by seawater. Geochemical reaction path modeling of hydrothermal fluid-seawater mixing and conductive cooling indicates that Cu sulphide formation at Logatchev I and 5°S mainly occurs at high temperatures and low dilution of the hydrothermal fluid by seawater. Iron precipitation is enhanced at higher fluid dilution, and the different amounts of minerals forming at 5°S and Logatchev I are thermodynamically controlled. Larger total amounts of minerals and larger amounts of sulphide precipitate during the mixing path when compared to the cooling path. Differences between model and field observations do occur and are attributable to closed system modeling, to kinetic influences and possibly to organic constituents of the hydrothermal fluids not accounted for by the model.
Resumo:
In northern regions where observational data is sparse, lake ice models are ideal tools as they can provide valuable information on ice cover regimes. The Canadian Lake Ice Model was used to simulate ice cover for a lake near Churchill, Manitoba, Canada throughout the 2008/2009 and 2009/2010 ice covered seasons. To validate and improve the model results, in situ measurements of the ice cover through both seasons were obtained using an upward-looking sonar device Shallow Water Ice Profiler (SWIP) installed on the bottom of the lake. The SWIP identified the ice-on/off dates as well as collected ice thickness measurements. In addition, a digital camera was installed on shore to capture images of the ice cover through the seasons and field measurements were obtained of snow depth on the ice, and both the thickness of snow ice (if present) and total ice cover. Altering the amounts of snow cover on the ice surface to represent potential snow redistribution affected simulated freeze-up dates by a maximum of 22 days and break-up dates by a maximum of 12 days, highlighting the importance of accurately representing the snowpack for lake ice modelling. The late season ice thickness tended to be under estimated by the simulations with break-up occurring too early, however, the evolution of the ice cover was simulated to fall between the range of the full snow and no snow scenario, with the thickness being dependant on the amount of snow cover on the ice surface.