35 resultados para time-dependent local density approximation
Resumo:
The ice cap on Berkner Island is grounded on bedrock within the Filchner-Ronne Ice Shelf and is, therefore, expected to be a well-suited place to retrieve long-term ice-core records reflecting the environmental situation of the Weddell Sea region. Shallow firn cores were drilled to 11 m at the two main summits of Berkner Island and analysed in high depth resolution for electrical d.c. conductivity (ECM), stable isotopes, chloride, sulphate, nitrate and methane-sulphonate (MSA). From the annual layering of dD and non-sea-salt (nss) sulphate, a mean annual snow accumulation of 26.6 cm water at the north dome and 17.4 cm water at the south dome are obtained. As a result of ineffective wind scouring indicated by a relatively low near-surface snow density, regular annual cycles are found for all species at least in the upper 4-5 m. Post depositional changes are responsible for a substantial decrease of the seasonal dD and nitrate amplitude as well as for considerable migration of the MSA signal operating below a depth of 3-4 m. The mean chemical and isotopic firn properties at the south dome correspond to the situation on the Filchner-Ronne Ice shelf at a comparable distance to the coast, whereas the north dome is found to be more influenced by maritime air masses. Persistent high sea-salt levels in winter snow at Berkner Island heavily obscure the determination of nss sulphate probably due to sulphate fractionation in the Antartic sea-salt aerosols. Estimated time-scales predict ages at 400 m depth to be ca. 2000 years for the north and ca. 3000 years for the south dome. Pleistocene ice is expected in the bottom 200 and 300 m, respectively.
Resumo:
Efforts to evaluate the response of coral larvae to global climate change (GCC) and ocean acidification (OA) typically employ short experiments of fixed length, yet it is unknown how the response is affected by exposure duration. In this study, we exposed larvae from the brooding coral Pocillopora damicornis to contrasts of temperature (24.00 °C [ambient] versus 30.49 °C) and pCO2 (49.4 Pa versus 86.2 Pa) for varying periods (1-5 days) to test the hypothesis that exposure duration had no effect on larval response as assessed by protein content, respiration, Symbiodinium density, and survivorship; exposure times were ecologically relevant compared to representative pelagic larval durations (PLD) for corals. Larvae differed among days for all response variables, and the effects of the treatment were relatively consistent regardless of exposure duration for three of the four response variables. Protein content and Symbiodinium density were unaffected by temperature and pCO2, but respiration increased with temperature (but not pCO2) with the effect intensifying as incubations lengthened. Survival, however, differed significantly among treatments at the end of the study, and by the 5th day, 78% of the larvae were alive and swimming under ambient temperature and ambient pCO2, but only 55-59% were alive in the other treatments. These results demonstrate that the physiological effects of temperature and pCO2 on coral larvae can reliably be detected within days, but effects on survival require > or = 5 days to detect. The detection of time-dependent effects on larval survivorship suggests that the influence of GCC and OA will be stronger for corals having long PLDs.
Physical oceanography and hydrochemistry measured on water bottle samples during METEOR cruise M10/1
Resumo:
During a R.V. Meteor JGOFS-NABE cruise to a tropical site in the northeast Atlantic in spring 1989, three different vertical regimes with respect to nitrate distribution and availability within the euphotic zone were observed. Besides dramatic variations in the depth of the nitracline, a previously undescribed nose-like nitrate maximum within the euphotic zone was the most prominent feature during this study. Both the vertical structure of phytoplankton biomass and the degree of absolute and relative new production were related to the depth of the nitracline, which in turn was dependent on the occurrence/non-occurrence of the subsurface subtropical salinity maximum (Smax). The mesoscale variability of the nitracline depth, as indicated from a pre-survey grid, and published data on the frequent occurrence of the Smax in tropical waters suggest higher variability of new production and F-ratio than usually expected for oligotrophic oceans. The importance of salt fingering and double diffusion for nitrate transport into the euphotic zone is discussed.