28 resultados para the rite of spring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies were carried out in the northeastern Sea of Okhotsk, in the zone of interaction of the West Kamchatka and Compensating Currents at the beginning of spring seasonal succession from March 23 to April 14,1998. Samples for analysis of pigmentary and species compositions of phytoplankton were taken from the sea surface layer, depth 0.5 m. To reduce influence of micropatchiness on phytoplankon distribution at each station subsamples 0.7-1 l were collected every 50-100 m. These subsamples were used to make integral samples 4.5-8.0 l. Phytoplankton biomass and concentration of chlorophyll a varied from 18.7 to 490.9 mg/m**3 and from 0.129 to 2.422 mg/m**3, respectively. Total concentration of phytoplankton pigments varied from 0.622 to 6.679 mg/m**3. In samples studied 51 species of microalgae from 5 orders were found. In terms of the number of species, Bacillariophyta (31 species) and Dinophyta (15 species) prevailed. Diatomaceous algae make up more than 80% of the total phytoplankton biomass in waters of the Compensating Current, from 50 to 80% in intermediate waters, and less than 50% in waters of the West Kamchatka Current. Phytoplankton populations consisting primarily of diatoms were characterized by very low chlorophyll a to biomass ratio (0.1 %). It is three times lower than the ratio observed in phytoplankton populations that were close by species composition and size composition in this area in the late April-early May 1996.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentration, distribution, and dynamics of yellow substance were studied during 1980-1982. Colored material accounted for 17-41% of dissolved organic matter and 2-14% of suspended organic matter. A relationship of yellow substance levels with salinity is analyzed. Absorption spectra of suspended particles are studied, occurrence of yellow-colored particles in suspended phase and their distribution in the Gulf of Riga are described. Concentration of suspended yellow organic matter in the upper layer of the gulf was inversely correlated with salinity. Calculations show that 10% of terrigenous humus is flocculated in the gulf during spring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nine hydrographic cruises were performed on the Gulf of Lion continental margin between June 1993 and July 1996. These observations are analysed to quantify the fluxes of particulate matter and organic carbon transported along the slope by the Northern Current and to characterise their seasonal variability. Concentration of particulate matter and organic carbon are derived from light-transmission data and water sample analyses. The circulation is estimated from the geostrophic current field. The uncertainty on the transport estimate, related to the error on the prediction of particle concentrations from light-transmission data and the error on velocities, is assessed. The particulate matter inflow entering the Gulf of Lion off Marseille is comparable to the Rhône River input and varies seasonally with a maximum transport between autumn and spring. These modifications result from variations of the water flux rather than variations of the particulate matter concentration. Residual transports of particulate matter and organic carbon across the entire Gulf of Lion are calculated for two cruises enclosing the domain that were performed in February 1995 and July 1996. The particulate matter budgets indicate a larger export from the shelf to deep ocean in February 1995 (110 ± 20 kg/s) than in July 1996 (25 ± 18 kg/s). Likewise, the mean particulate organic carbon export is 12.8 ± 0.5 kg/s in February 1995 and 0.8 ± 0.2 kg/s in July 1996. This winter increase is due to larger allochthonous and autochthonous inputs and also to enhanced shelf-slope exchange processes, in particular the cascading of cold water from the shelf. The export of particulate matter by the horizontal currents is moreover two orders of magnitude larger than the vertical particulate fluxes measured at the same time with sediment traps on the continental slope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification substantially alters ocean carbon chemistry and hence pH but the effects on sea ice formation and the CO2 concentration in the enclosed brine channels are unknown. Microbial communities inhabiting sea ice ecosystems currently contribute 10-50% of the annual primary production of polar seas, supporting overwintering zooplankton species, especially Antarctic krill, and seeding spring phytoplankton blooms. Ocean acidification is occurring in all surface waters but the strongest effects will be experienced in polar ecosystems with significant effects on all trophic levels. Brine algae collected from McMurdo Sound (Antarctica) sea ice was incubated in situ under various carbonate chemistry conditions. The carbon chemistry was manipulated with acid, bicarbonate and bases to produce a pCO2 and pH range from 238 to 6066 µatm and 7.19 to 8.66, respectively. Elevated pCO2 positively affected the growth rate of the brine algal community, dominated by the unique ice dinoflagellate, Polarella glacialis. Growth rates were significantly reduced when pH dropped below 7.6. However, when the pH was held constant and the pCO2 increased, growth rates of the brine algae increased by more than 20% and showed no decline at pCO2 values more than five times current ambient levels. We suggest that projected increases in seawater pCO2, associated with OA, will not adversely impact brine algal communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a suite of eight ocean biogeochemical/ecological general circulation models from the MAREMIP and CMIP5 archives to explore the relative roles of changes in winds (positive trend of Southern Annular Mode, SAM) and in warming- and freshening-driven trends of upper ocean stratification in altering export production and CO2 uptake in the Southern Ocean at the end of the 21st century. The investigated models simulate a broad range of responses to climate change, with no agreement ona dominance of either the SAM or the warming signal south of 44° S. In the southernmost zone, i.e., south of 58° S, they concur on an increase of biological export production, while between 44 and 58° S the models lack consensus on the sign of change in export. Yet, in both regions, the models show an enhanced CO2 uptake during spring and summer. This is due to a larger CO 2 (aq) drawdown by the same amount of summer export production at a higher Revelle factor at the end of the 21st century. This strongly increases the importance of the biological carbon pump in the entire Southern Ocean. In the temperate zone, between 30 and 44° S all models show a predominance of the warming signal and a nutrient-driven reduction of export production. As a consequence, the share of the regions south of 44° S to the total uptake of the Southern Ocean south of 30° S is projected to increase at the end of the 21st century from 47 to 66% with a commensurable decrease to the north. Despite this major reorganization of the meridional distribution of the major regions of uptake, the total uptake increases largely in line with the rising atmospheric CO2. Simulations with the MITgcm-REcoM2 model show that this is mostly driven by the strong increase of atmospheric CO2, with the climate-driven changes of natural CO2 exchange offsetting that trend only to a limited degree (~10%) and with negligible impact of climate effects on anthropogenic CO2 uptake when integrated over a full annual cycle south of 30° S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During "Meteor" cruise 23 in spring 1971 intensive investigations of the Mediterranean outflow in the Gulf of Cidiz were carried out. In order to give a budget of the inflow and outflow numerous CTD-stations were taken. The observations also included six moored current meter arrays deployed in the known outflow channels. The considerations given here are based mainly on three hydrographic sections, current meter records averaged over one month, and geological observations from the bed forms beneath the Mediterranean undercurrent. The results show that the outflow essentially is determined by the bathymetry of the area. At least four separate outflow channels could be confirmed. The volumentric transport rates of three of them were calculated. These channels are the northerly near shelf branch (0.40 * 10**6 m**3 * sec**-1), the main branch (1.39 * 10**6 m**3 * sec**-1) in southwesterly direction, and an intermediate branch (0.24 * 10**6 m**3 * sec**-1) found between both. In a static box model the progressive mixing of 0.95 * 10**6 m**3 * sec**-1 pure Mediterranean Water with 1.97 * 10**6 m**3 * sec**-1 North Atlantic Central Water is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (dP) with values of -8.6(±0.2) per mil for d18O and -58(±2) per mil for d2H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of -0.17(±0.02) per mil per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, when the influence of human economic activity is progressively increasing, significant attention is devoted to the state of water ecosystems. All researchers engaged in these problems agree that the state of the water system (pollution and eutrophication) can only be estimated on the basis of long-term researches. Systemic monitoring (at least once per month) of ionic components (Ca2+, Mg2+, Na+, K+, bicarbonates, sulfates, and chlorides) in unfiltered water of Lake Baikal and its tributaries had been carried out under the supervision of Votintsev since 1947. Based on the analysis of systematic data on trophic components obtained during 1965-2005, we tried to estimate the present-day trophic status of the pelagic zone in the lake, define the trend of long-term changes of trophic components and understand the reasons of the distortion of cyclicity in the development of spring diatom algae, which create a favorable environment in any water basin. It should be noted that the station near Cape Polovinnyi is located 20 km away from the town of Baikal'sk. Wastewaters of the Baikal'sk pulp and paper mill is the main source of dioxins and furans in Baikal. Based on the significant difference between sulfate contents in wastewaters of the plant (>300 mg/l), tributaries of Baikal (7.5 mg/l), and waters in the southern part of the lake (3.9 mg/l), we defined the following periods: (i) period of natural seasonal patterns until 1967-1968 (prior to putting the Baikal'sk Mill into operation; (ii) period of weak anthropogenic pollution (1969-1985); and (iii) period of strong anthropogenic pollution since 1986.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general study of structure, biomass, and dynamic estimates on meiofauna was carried out during PREFLEX (1975) and FLEX (1976), in 117- 141 m water depth. On the basis of these data an attempt was made to estimate meiofauna production, and this is discussed in relation to the energy input from the spring phytoplankton bloom. Sampling was performed at five stations, but only the stations 1, 4, and 5 were covered by a complete series from August 1975 to July 1976. At each station, from four replicate box core samples, two were withdrawn to study the abundance, distribution, and biomass of meiofauna, the content of chloroplastic pigment equivalents (CPE), and chemical and grain size analyses. At all stations grain size fell in the range of fine sand having median diameters (MD) of < 125 µm. From station 1 to 5 an increase in MD was observed. Highest values of CPE (7.81 µg m l**-1) and organic matter (4.7 %) were obtained in June and July (1976)/ August (1975), respectively. Meiofauna abundance was fairly uniform at all stations examined. Station 1 displayed maximal numbers during the whole investigation period. The abundance per 100 cm**2 varied between 15,550 and 34,900 organisms. All meiofauna studied both in total and as separate taxa showed annual cycles of abundance. Low abundance values were recorded during early summer, and maximum values during winter. High numbers of Foraminifera were obtained for August 1975 (9,460 per 100 cm**2) and July 1976 (9,710 per 100 cm**2). From December to June the values decreased from 3,280 to 1,030 per 100 cm**2. At station 1 maximum values of meiofauna biomass were recorded ranging from 1.5 to 2.7 g DWT m**-2. The mean meiofauna dry weight amounted to 2.1 g DWT m**-2. Based on minimum production, the P/B ratio for the area of station 1 might have a mean of 1.4. Taking into consideration generation times we believe that a turnover ratio of 2 is a conservative value for the Fladen Ground meiofauna. The annual production would amount to 4.2 g DWT m**-2 yr**-1. This is 27.5 % of the energy supply during the spring phytoplankton bloom, which is channelled into the meiofauna. The hypothesis is put forward that the energetic strategy of deep offshore meiofauna differs distinctively from that of shallow inshore meiofauna. While the shallow inshore meiofauna show a relatively fast response to organic matter input, the deep offshore meiofauna reacts much more slowly, the food energy consumption seems to be spread out over a longer period.