26 resultados para survey data
Resumo:
Prior to arrival on this site, the only survey data available was from the Vema-20 crossing of the area. The recommended site location was over a relatively smooth valley in the bottom topography at about 4750 meters (15,580 feet) depth (uncorrected), about 10 kilometers wide E-W between peaks (or ridges) on either side. Sediment thickness was unknown. The center of the valley is near the peak of a wide (40 to 50 kilometers) positive magnetic anomaly, identified as Magnetic Anomaly 30 in the hypothesized geomagnetic time scale with an age of 72 million years.
Resumo:
Cruise Mn-74-02 of the R/V MOANA WAVE was the second part of the field work of the NSF/IDOE Inter-University Ferromanganese Research Program in 1974, and we gratefully acknowledge the support of the office for the International Decade of Ocean Exploration and the Office of Oceanographic Facilities and Support. This program was designed to investigate the origin, growth, and distribution of copper/nickel-rich manganese nodules in the Pacific Ocean. The field effort was designed to satisfy sample requirements of the fifteen principal investigators, while increasing general knowledge of the copper/nickel-rich nodule deposits of the equatorial Pacific. This report is the second of a series of cruise reports designed to assist sample requests for documented nodules, sediment, and water samples so that laboratory results can be realistically compared and related to the environment of nodule growth. Nodule samples and bathymetric and navigational data are archived at the Hawaii Institute of Geophysics, University of Hawaii. Bulk chemical analyses of nodules and reduction of survey data were carried out at Hawaii. Sediment cores were stored at the University of Hawaii and at Scripps Institution of Oceanography. The SIO analytical facility provided stratigraphic data on sediment chemistry.
Resumo:
During GANOVEX VI new gravity data were collected along an east-west profile in North Victoria Land south of the Drygalski Ice Tongue, extending 150 km across the Transantarctic Mountains, and comprising 21 data points. Thirty five additional data points were collected over a small area near Brimstone Peak, near the western end of the regional profile. The survey south of the Drygalski has been connected to northern gravity data (GANOVEX V) by a survey line of 12 points. All data have been terrain corrected, and are further constrained by satellite elevation (GPS) and radar ice-thickness measurements. A pronounced regional Bouguer gravity gradient decreasing to the west by approximately 3 mgal/km is superimposed over a coast-parallel belt of granitoid basement rock. West of this belt the local gravity fields become mote variable. Over Beta Peak (Ferrar dolerite) a 50 mgal spike is obser- ved. Within this area, the Ferrar sills are exposed at the surface. West of Brimstone Peak (Ferrar/Kirk patrick sequences), a smooth regional gradient appears to reassert itself. We interpret the initial gradient east (oceanward) of the break-in-slope to be representative of the crust/mantle boundary within the study area. We interpret the initial break-in-slope and the apparent flattening of the regional gradient to be an effect of the N-S trending zone of dense Ferrar sills and associated deep crusttil fractionate replacing less dense basement. We attribute the variability of the local field to be the product of sub-glacial density contrasts that cannot be removed. The regional gravity gradient of the profile is steeper than that observed to the north (Mt. Melbourne quadrangle) and shallower than that reported to the south (McMurdo Sound). The absolute values of the coastal points of origin south of the Drygalski and within the Mt. Melbourne quadrangle differ by 60 to 100 mgal. In addition, topographic relief within the regional transect area is subdued relative to the Transantarctic Mountains to the north and south. We speculate that the root structure of the Transantarctic Mountains undergoes a change somewhere between the Mt. Melbourne quadrangle and the region south of the Drygalski Ice Tongue.
Resumo:
Data were collected during various groundfish surveys carried out by IFREMER from October to December between 1997 and 2011, on the eastern continental shelf of the Bay of Biscay and in the Celtic Sea (EVHOE series). The sampling design was stratified according to latitude and depth. A 36/47 GOV trawl was used with a 20 mm mesh codend liner. Haul duration was 30 minutes at a towing speed of 4 knots. Fishing was restricted to daylight hours. Catch weights and catch numbers were recorded for all species and body size measured. The weights and numbers per haul were transformed into abundances per km**2 by considering the swept area of a standard haul (0.069 km**2).
Resumo:
An object based image analysis approach (OBIA) was used to create a habitat map of the Lizard Reef. Briefly, georeferenced dive and snorkel photo-transect surveys were conducted at different locations surrounding Lizard Island, Australia. For the surveys, a snorkeler or diver swam over the bottom at a depth of 1-2m in the lagoon, One Tree Beach and Research Station areas, and 7m depth in Watson's Bay, while taking photos of the benthos at a set height using a standard digital camera and towing a surface float GPS which was logging its track every five seconds. The camera lens provided a 1.0 m x 1.0 m footprint, at 0.5 m height above the benthos. Horizontal distance between photos was estimated by fin kicks, and corresponded to a surface distance of approximately 2.0 - 4.0 m. Approximation of coordinates of each benthic photo was done based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software (www.geospatialexperts.com). Coordinates of each photo were interpolated by finding the gps coordinates that were logged at a set time before and after the photo was captured. Dominant benthic or substrate cover type was assigned to each photo by placing 24 points random over each image using the Coral Point Count excel program (Kohler and Gill, 2006). Each point was then assigned a dominant cover type using a benthic cover type classification scheme containing nine first-level categories - seagrass high (>=70%), seagrass moderate (40-70%), seagrass low (<= 30%), coral, reef matrix, algae, rubble, rock and sand. Benthic cover composition summaries of each photo were generated automatically in CPCe. The resulting benthic cover data for each photo was linked to GPS coordinates, saved as an ArcMap point shapefile, and projected to Universal Transverse Mercator WGS84 Zone 56 South. The OBIA class assignment followed a hierarchical assignment based on membership rules with levels for "reef", "geomorphic zone" and "benthic community" (above).