48 resultados para strongly stable ideal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The final phase of the closure of the Panamanian Gateway and the intensification of Northern Hemisphere Glaciation (NHG) both occurred during the Late Pliocene. Glacial-interglacial (G-IG) variations in sea level might, therefore, have had a significant impact on the remaining connections between the East Pacific and the Caribbean. Here, we present combined foraminiferal Mg/Ca and d18O measurements from Ocean Drilling Program (ODP) Site 1241 from the East Pacific and ODP Site 999 from the Caribbean. The studied time interval covers the first three major G-IG Marine Isotope Stages (MIS 95-100, ~2.5 Ma) after the intensification of NHG. Analyses were performed on the planktonic foraminifera Neogloboquadrina dutertrei and Globigerinoides sacculifer, representing water mass properties in the thermocline and the mixed-layer, respectively. Changes in sea water temperature, relative salinity, and water column stratification strongly suggest that the Panamanian Gateway temporarily closed during glacial MIS 98 and 100, as a result of changes in ice volume equivalent to a drop in sea level of 60-90 m. Reconstructed sea surface temperatures (SST) from G. sacculifer show a glacial decrease of 2.5°C at Site 1241, but increases of up to 3°C at Site 999 during glacial MIS 98 and 100 suggesting that the Panamanian Gateway closed during these glacial periods. The Mg/Ca-temperatures of N. dutertrei remain relatively stable in the East Pacific, but do show a 3°C warming in the Caribbean at the onset of these glacial periods suggesting that the closing of the gateway also changed the water column stratification. We infer that the glacial closure of the gateway allowed the Western Atlantic Warm Pool to extend into the southern Caribbean, increasing SST (G. sacculifer) and deepening the thermocline (N. dutertrei). Additionally, ice volume appears to have become large enough during MIS 100 to survive the relatively short lasting interglacial MIS 99 so that the gateway remained closed. Towards the end of MIS 98, during MIS 97 and into MIS 96 temperatures on both sides are mostly similar suggesting water masses exchanged again. Additionally, Caribbean variations in SST and d18Owater follow a precession-like cyclicity rather than the obliquity-controlled variations characteristic of the East-Pacific and many other tropical areas, suggesting that regional atmospheric processes related to the trade winds and the Intertropical Convergence Zone (ITCZ) had a dominant impact in the Caribbean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep marine late Pleistocene sediments from Ocean Drilling Program Sulu Sea Site 769 contain a high-resolution record of paleoceanographic change in this strongly monsoonal climatic setting in the tropical western Pacific. Detailed time series of planktonic foraminifer (G.ruber; white variety) d18O, d13C, and bulk CaCO3 mass accumulation rate (MAR) were generated, spanning the last 750 k.y. Sedimentation rates in this portion of the record average 8.5 cm/k.y., and vary from 4 to 16 cm/k.y. Cross spectral analysis of the d18O and d13C time-series demonstrate that each contains increased variance at the primary orbital periodicities. The d18O record shows strong variability in the precessional-band and closely correlates with the SPECMAP d18O record and other high-resolution records. The dominance of a 23-k.y cycle in the d18O record agrees with other studies of the monsoon system in the Indian Ocean that have documented the importance of precessional insolation as a monsoon-forcing mechanism. In addition, d13C is strongly coherent, with d18O at a period of 41 k.y (obliquity), suggesting a connection between surface water CO2 chemistry in the Sulu Sea and high- latitude climatic change. The d18O and d13C time-series both contain increased spectral variance at a period of 30 k.y. Although the source of 30-k.y. variability is unknown, other studies have documented late Pleistocene Pacific Oceanographic variability with a period of 30 k.y. Major- and trace-metal analyses were performed on a second, less-detailed sample series to independently assess paleoproductivity changes and bottom-water conditions through time. Glacial periods are generally times of increased calcium carbonate and copper accumulation. The positive association between these independent indicators of paleoproductivity suggests an increase in productivity in the basin during most glacial episodes. Changing bottom-water redox conditions were also assessed using the geochemical data. Low concentrations of molybdenum throughout the record demonstrate that bottom waters at this site were never anoxic during the last 750 k.y. The bioturbated character of the sediments agrees with this interpretation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From a 10.7 m long gravity core from the Sierra Leone Rise (5°39.5' N, 19°51' W) a detailed oxygen and carbon isotope record of both planktonic and benthonic foraminifera species was obtained extending from the Recent to Jaramillo event. The analysis yielded six major results. 1. Benthos oxygen isotopes varied by 1.8-2.2 per mil from interglacial to glacial times and may indicate a synglacial cooling of North Atlantic Deep Water at 2800 m depth by 1-3°C. 2. Variable anomalies between the benthos and plankton d18O record indicate a cooling of sea-surface temperatures (SST) by up to 6 °C during some glacial stages. 3. Southerly trade winds and equatorial upwelling may excert the primary control off SST variations, in particular of extremee values of cold and warm stages and of the abrupt character of climate transitions and their leads and lags, and finally, of variable sedimentation rates. 4. The benthos d13C record correlates well with the flux and preservation of organic matter. 5. A new time scale, CARPOR, was established from the assumption that terrigenous sediment supply was ± constant bit CaCO3 varied considerably. When applied to the d18O record, three major and numerous short-term variations of sedimentation rates (0.8 to 4.0 cm/kyr) can be distinguished. 6. The climatic record was modified by bioturbation much more strongly during cold than during warm stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Hole 735B was drilled to a depth of 1.5 km in a tectonic window of gabbroic lower oceanic crust created at the Southwest Indian Ridge. The gabbros have a very stable natural remanent magnetization (NRM) of reversed polarity with most unblocking temperatures slightly below the Curie temperature of magnetite. The NRM includes a drilling-induced overprint but its intensity decays strongly towards the interior of the drill core. The demagnetization data yield no or only a very small secondary magnetization component acquired during the present Brunhes chron or an earlier normal chron, suggesting cooling through most of the blocking temperature range during chron C5r and a strong resistance against the acquisition of thermoviscous magnetization. A novel furnace has been designed to measure magnetizations and their time dependences at high temperatures (up to 580 deg C) inside a commercial SQUID magnetometer. Magnetic viscosity experiments have been conducted on the gabbros at temperatures up to 550 deg C to determine the time and temperature stability of remanent magnetization. Viscosities are generally small and increase little with temperature below the main blocking temperature, where the increase becomes almost an order of magnitude. Extrapolations to geological times infer viscous acquisitions that would be 5-25% of a thermoremanence in 100 kyr and at temperatures of 200-500 deg C. At ocean bottom temperature the predicted magnetization of one sample acquired in the present Brunhes chron should be 10% of the NRM. However, this is not recognized during NRM demagnetization and partial thermoremanent magnetization (pTRM) acquisitions at 250 deg C are also much smaller than predicted. It thus appears that the NRMs are generally magnetically harder than magnetizations acquired after heating to 570 deg C in the laboratory. Susceptibility changes during heating are small (<5%) indicating a seemingly stable magneto-mineralogy, but conspicuous minima occur after heating to 520 deg C. Also, quasi paleointensity experiments reveal characteristic patterns in the NRM/pTRM ratios and also large increases in pTRM capacity after heating to 570 deg C. Moreover, anhysteretic remanent magnetization acquisition in the low field range (<=10 mT) is strongly enhanced after heating by factors up to three. The alteration of the magneto-mineralogy is interpreted to result from the annealing of defects in magnetite that originate from tectonically induced strain. The oceanic gabbros of Hole 735B are thus ideal source layer material for marine magnetic anomalies, and secondary thermoviscous acquisition, as a possible cause for anomalous skewness, is essentially absent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen and carbon isotope ratio measurements are presented for Globigerinoides ruber and for benthic species (mainly Uvigerina spp.) in the Pleistocene and uppermost Pliocene section of ODP Hole 677A in the Panama Basin. This provides the best available continuous Pleistocene stable isotope records from any location, fully justifying the recoring of DSDP Site 504. Oxygen isotope stage 22 (age about 0.85 Ma) was of similar magnitude to the most extensive glacials of the Brunhes and constitutes a logical base for the middle Pleistocene. Oxygen isotope stages as defined by Ruddiman et al. (1986, doi:10.1016/0012-821X(86)90024-5) and by Raymo et al. (1989, doi:10.1029/PA004i004p00413) back to stage 104 are recognized. Although the internationally agreed base of the Quaternary at or near stage 62 (about 1.6 Ma) is not marked by a major isotopic event, it does approximate the base of a regime characterized by highly regular 41,000-yr climate cycles. The records at Site 677 are ideal for time-series analyses and will permit a new attempt to develop a chronology for the early Pleistocene based on tuning to the orbital frequencies. The carbon isotope records also appear to contain considerable variance at orbital frequencies throughout the sequence analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We sampled the upper water column for living planktic foraminifera along the SW-African continental margin. The species Globorotalia inflata strongly dominates the foraminiferal assemblages with an overall relative abundance of 70-90%. The shell delta18O and delta13C values of G. inflata were measured and compared to the predicted oxygen isotope equilibrium values (delta18O(eq)) and to the carbon isotope composition of the total dissolved inorganic carbon (delta13C(DIC)) of seawater. The delta18O of G. inflata reflects the general gradient observed in the predicted delta18O(eq) profile, while the delta13C of G. inflata shows almost no variation with depth and the reflection of the delta13C(DIC) in the foraminiferal shell seems to be covered by other effects. We found that offsets between delta18O(shell) and predicted delta18O(eq) in the surface mixed layer do not correlate to changes in seawater [CO3[2-]]. To calculate an isotopic mass balance of depth integrated growth, we used the oxygen isotope composition of G. inflata to estimate the fraction of the total shell mass that is grown within each plankton tow depth interval of the upper 500 m of the water column. This approach allows us to calculate the DELTA delta13C(interval added-DIC); i.e. the isotopic composition of calcite that was grown within a given depth interval. Our results consistently show that the DELTA delta13C(IA-DIC) correlates negatively with in situ measured [CO3[2-]] of the ambient water. Using this approach, we found DELTA delta13C(IA-DIC)/[CO3[2-]] slopes for G. inflata in the large size fraction (250-355 µm) of -0.013 per mil to 0.015 per mil (µmol/kg)**-1 and of -0.013 per mil to 0.017 per mil (µmol/kg)**-1 for the smaller specimens (150-250 µm). These slopes are in the range of those found for other non-symbiotic species, such as Globigerina bulloides, from laboratory culture experiments. Since the DELTA delta13C(IA-DIC)/[CO3[2-]] slopes from our field data are nearly identical to the slopes established from laboratory culture experiments we assume that the influence of other effects, such as temperature, are negligibly small. If we correct the delta13C values of G. inflata for a carbonate ion effect, the delta13C(shell) and delta13C(DIC) are correlated with an average offset of 2.11.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine transgression Into the Baltic Sea through the Great Belt took place around 9,370 calibrated C-14-years B.P. The sedimentary sequence from the early brackish phase and the change to marine conditions has been investigated in detail through C-14-datings, and oxygen and carbon isotope measurements, and is interpreted by comparison with modern analogs. The oldest brackish sediments are the strongly laminated clays and silts rich in organic carbon followed by non-laminated heavily bioturbated silts. The bedding and textural characteristics and stable isotope analyses on Ammonia beccarii (dextral) and A. beccarii (sinistral) show that the deposltlonal conditions respond to a change at about 9,100 cal. a B.P. from an unstratified brackish water environment in the initial stage of the Littorina Transgression to a thermohaline layered milieu in the upper unit. The oxygen isotope results indicate that the bottom waters of this latter period had salinities and temperatures comparable to the present day Kiel Bay waters. The isotopic composition of the total organic carbon and the d13C-values of A. beccarii reveal a gradual change from an initially lacustrine/terrestrial provenance toward a brackish/marine dominated depositional environment. A stagnation of the sea level at around 9,100 to 9,400 B.P. is indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 129 recovered chert, porcellanite, and radiolarite from Middle Jurassic to lower Miocene strata from the western Pacific that formed by different processes and within distinct host rocks. These cherts and porcellanites formed by (1) replacement of chalk or limestone, (2) silicification and in-situ silica phase-transformation of bedded clay-bearing biosiliceous deposits, (3) high-temperature silicification adjacent to volcanic flows or sills, and (4) silica phase-transformation of mixed biosiliceous-volcaniclastic sediments. Petrologic and O-isotopic studies highlight the key importance of permeability and time in controlling the formation of dense cherts and porcellanites. The formation of dense, vitreous cherts apparently requires the local addition and concentration of silica. The influence of permeability is shown by two examples, in which: (1) fragments of originally identical radiolarite that were differentially isolated from pore-water circulation by cement-filled fractures were silicified to different degrees, and (2) by the development of secondary porosity during the opal-CT to quartz inversion within conditions of negligible permeability. The importance of time is shown by the presence of quartz chert below, but not above, a Paleogene hiatus at Site 802, indicating that between 30 and 52 m.y. was required for the formation of quartz chert within calcareous-siliceous sediments. The oxygen-isotopic composition for all Leg 129 carbonate- and Fe/Mn-oxide-free whole-rock samples of chert and porcellanite range widely from d18O = 27.8 per mil to 39.8 per mil vs. V-SMOW. Opal-CT samples are consistently richer in 18O (34.1 per mil to 39.3 per mil) than quartz subsamples (27.8 per mil to 35.7 per mil). Using the O-isotopic fractionation expression for quartz-water of Knauth and Epstein (1976) and assuming d18Opore water = -1.0 per mil, model temperatures of formation are 7°-26°C for carbonate-replacement quartz cherts, 22°-25°C for bedded quartz cherts, and 32°-34°C for thermal quartz cherts. Large variations in O-isotopic composition exist at the same burial depth between co-existing silica phases in the same sample and within the same phase in adjacent lithologies. For example, quartz has a wide range of isotopic compositions within a single breccia sample; d18O = 33.4 per mil and 28.0 per mil for early and late stages of fracture-filling cementation, and 31.6 per mil and 30.2 per mil for microcrystalline quartz precipitation within enclosed chert and radiolarite fragments. Similarly, opal-CT d101 spacing varies across lithologic or diagenetic boundaries within single samples. Co-occurring opal-CT and chalcedonic quartz in shallowly buried chert and porcellanite from Sites 800 and 801 have an 8.7 per mil difference in d18O, suggesting that pore waters in the Pigafetta Basin underwent a Tertiary shift to strongly 18O-depleted values due to alteration of underlying Aptian to Albian-Cenomanian volcaniclastic deposits after opal-CT precipitation, but prior to precipitation of microfossil-filling chalcedony.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authigenic carbonates associated with cold seeps provide valuable archives of changes in the long-term seepage activity. To investigate the role of shallow-buried hydrates on the seepage strength and fluid composition we analysed methane-derived carbonate precipitates from a high-flux hydrocarbon seepage area ("Batumi seep area") located on the south-eastern Black Sea slope in ca. 850 m. In a novel approach, we combined computerized X-ray tomography (CT) with mineralogical and isotope geochemical methods to get additional insights into the three-dimensional internal structure of the carbonate build-ups. X-ray diffractometry revealed the presence of two different authigenic carbonate phases, i.e. pure aragonitic rims associated with vital microbial mats and high-Mg calcite cementing the hemipelagic sediment. As indicated by the CT images, the initial sediment has been strongly deformed, first plastic then brittle, leading to brecciation of the progressively cemented sediment. The aragonitic rims on the other hand, represent a presumably recent carbonate growth phase since they cover the already deformed sediment. The stable oxygen isotope signature indicates that the high-Mg calcite cement incorporated pore water mixed with substantial hydrate water amounts. This points at a dominant role of high gas/fluid flux from decomposing gas hydrates leading to the deformation and cementation of the overlying sediment. In contrast, the aragonitic rims do not show an influence of 18O-enriched hydrate water. The differences in d18O between the presumably recent aragonite precipitates and the older high-Mg cements suggest that periods of hydrate dissociation and vigorous fluid discharge alternated with times of hydrate stability and moderate fluid flow. These results indicate that shallow-buried gas hydrates are prone to episodic decomposition with associated vigorous fluid flow. This might have a profound impact on the seafloor morphology resulting e.g. in the formation of carbonate pavements and pockmark-like structures but might also affect the local carbon cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

North Atlantic climate variations are reflected in sedimentary records from the northern Indian Ocean in which two basins, the Arabian Sea and the Bay of Bengal, are strongly affected by the monsoon. Contrary to the Bay of Bengal the Arabian Sea plays an important role in the global marine nitrogen cycle. In its mid-water oxygen minimum zone (OMZ) bioavailable fixed nitrogen is reduced to nitrogen gas (NO3- - > N2), whereas oxygen concentrations are slightly above the threshold of nitrate reduction in the OMZ of the Bay of Bengal. A coral colony (Porites lutea) growing south of Port Blair on the Andaman Islands in the Bay of Bengal was studied for its response to changes in the monsoon system and its link to temperature changes in the North Atlantic Ocean, between 1975 and 2006. Its linear extension rates, d13C and d18O values measured within the coral skeleton reveal a strong seasonality, which seems to be caused by the monsoon-driven reversal of the surface ocean circulation. The sampling site appears to be influenced by low salinity Bay of Bengal Water during the NE monsoon (boreal winter) and by the high salinity Arabian Sea Water during the SW monsoon in summer. The high salinity Arabian Sea Water circulates along with the Summer Monsoon Current (S-MC) from the Arabia Sea into the Bay of Bengal. Decreasing d18O and reconstructed salinity values correlate to the increasing SSTs in the North Atlantic Ocean indicating a reduced influence of the S-MC at the sampling site in the course of northern hemispheric warming. During such periods oxygen-depletion became stronger in the OMZ of the Arabian Sea as indicated by the sedimentary records. A reduced propagation of oxygen-depleted high salinity Arabian Sea Water into the Bay of Bengal could be a mechanism maintaining oxygen concentration above the threshold of nitrate reduction in the OMZ of the Bay of Bengal in times of global warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Tithonian sequence of shallow-water limestones, intercalated with siliciclastics and overlain by dolomite, was recovered during drilling at ODP Site 639 on the edge of a tilted fault block. The carbonates were strongly affected by fracturing, dolomitization, dedolomitization, and compaction. The chronology and nature of the fractures, fracture infilling, and diagenesis of the host rock are established and correlated for both the limestone and the dolomite. A first phase of dolomitization affected limestone that was already, at least partially, indurated. In the limestone unit, fractures were filled by calcite and dolomite; most of the dolomite was recrystallized into calcite, except for the upper part. In the dolomitic unit, the first-formed dolomite was progressively recrystallized into saddle dolomite, as fractures were simultaneously activated. The dolomitic textures become less magnesian (the molar ratio mMg/mCa goes from 1.04-0.98 to 0.80), and the d18O (PDB) ranges from -10 per mil to -8 per mil. The varying pores and fissures are either cemented by a calcic saddle dolomite (mMg/mCa ranging from 0.95 to 0.80) or filled with diverse internal sediments of detrital calcic dolomite, consisting of detrital dolomite silt (d18O from -9 per mil to -7 per mil) and laminated yellow filling (with different d18O values that range from -4 per mil to +3 per mil). These internal sediments clearly contain elements of the host rock and fragments of saddle crystals. They are covered by marls with calpionellids of early Valanginian age, which permits dating of most of the diagenetic phases as pre-Valanginian. The dolomitization appears to be related to fracturing resulting from extensional tectonics; it is also partially related to an erosional episode. Two models of dolomitization can be proposed from the petrographic characteristics and isotopic data. Early replacement of aragonite bioclasts by sparite, dissolution linked to dolomitization, and negative d18O values of dolomite suggest a freshwater influence and 'mixing zone' model. On the other hand, the significant presence of saddle dolomite and repeated negative d18O values suggest a temperature effect; because we can dismiss deep burial, hydrothermal formation of dolomite would be the most probable model. For both of these hypotheses, the vadose filling of cavities and fractures by silt suggests emersion, and the different, and even positive, d18O values of the last-formed yellow internal sediment could suggest dolomitization of the top of the sequence under saline to hypersaline conditions. Fracturing resulting in the reopening of porosity and the draining of dolomitizing fluids was linked to extensional tectonics prior to the tilting of the block. These features indicate an earlier beginning to the rifting of the Iberian margin than previously known. Dolomitization, emersion, and erosion correspond to eustatic sea-level lowering at the Berriasian/Valanginian boundary. Diagenesis, rather than sedimentation, seems to mark this global event and to provide a record of the regional tectonic history.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have conducted an integrated study of ice-rafted debris (IRD) and oxygen isotopes (measured on Cibicides, Globigerina bulloides, and Neogloboquadrina pachyderma, using identical samples). We used samples from the early Late Pliocene Gauss Chron from ODP Site 114-704 on the Meteor Rise in the subantarctic South Atlantic. During the early Gauss Chron, the oxygen isotopic ratios are generally up to 0.5?-0.6? less than their respective Holocene values. The lowest values in this record can accommodate a warming of about 2.5°C or a sea-level rise of about 50 m, but not both, and probably result from some warming and a small reduction in global ice volume. Starting with isotope stage MG2 [ 3.23 Ma on the Berggren et al. ( 1985) time scale; 3.38 on the Shackleton et al. ( 1995b) time scale] oxygen-isotopic values generally increase (and oscillate about a Holocene mean). The first significant IRD appears at the same time. There is a subsequent increase in IRD amounts upsection. In order to reach the site, this material must have been transported by large, tabular icebergs derived from Antarctic ice shelves or ice tongues, similar to occasional, large modern icebergs. This combined record suggests strongly that the Antarctic ice sheet was essentially intact; some warming at the drill site is indicated, but not a major reduction in ice-volume on Antarctica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cores from Sites 1129, 1131, and 1132 (Ocean Drilling Program (ODP) Leg 182) on the uppermost slope at the edge of the continental shelf in the Great Australian Bight reveal the existence of upper Pleistocene bryozoan reef mounds, previously only detected on seismic lines. Benthic foraminiferal oxygen isotope data for the last 450,000 years indicate that bryozoan reef mounds predominantly accumulated during periods of lower sea level and colder climate since stage 8 at Sites 1129 and 1132 and since stage 4 at the deeper Site 1131. During glacials and interstadials (stages 2-8) the combination of lowered sea level, increased upwelling, and absence of the Leeuwin Current probably led to an enhanced carbon flux at the seafloor that favored prolific bryozoan growth and mound formation at Site 1132. At Site 1129, higher temperatures and downwelling appear to have inhibited the full development of bryozoan mounds during stages 2-4. During that time, favorable hydrographic conditions for the growth of bryozoan mounds shifted downslope from Site 1129 to Site 1131. Superimposed on these glacial-interglacial fluctuations is a distinct long-term paleoceanographic change. Prior to stage 8, benthic foraminiferal assemblages indicate low carbon flux to the seafloor, and bryozoan mounds, although present closer inshore, did not accumulate significantly at Sites 1129 and 1132, even during glacials. Our results show that the interplay of sea level change (eustatic and local, linked to platform progradation), glacial-interglacial carbon flux fluctuations (linked to local hydrographic variations), and possibly long-term climatic change strongly influenced the evolution of the Great Australian Bight carbonate margin during the late Pleistocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Holocene Twin Slides form the most recent of recurrent mass wasting events along the NE portion of Gela Basin within the Sicily Channel, central Mediterranean Sea. Here, we present new evidence on the morphological evolution and stratigraphic context of this coeval slide complex based on deepdrilled sediment sequences providing a >100 ka paleo-oceanographic record. Both Northern (NTS) and Southern Twin Slide (STS) involve two failure stages, a debris avalanche and a translational slide, but are strongly affected by distinct preconditioning factors linked to the older and buried Father Slide. Core-acoustic correlations suggest that sliding occurred along sub-horizontal weak layers reflecting abrupt physical changes in lithology or mechanical properties. Our results show further that headwall failure predominantly took place along sub-vertical normal faults, partly through reactivation of buried Father Slide headscarps.