77 resultados para solitary Oxaea flavescens


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neptunian dikes and cavities as weil as their fillings are described from Middle to Upper Devonian carbonates of the Warstein area. The genesis of the pre-Upper Carboniferous dikes is due to pre-orogenic synsedimentary tensional movements. Lifting, subsidence and tilting caused joints and cracks, which are enlarged to dikes and cavities on submarine conditions. The post-Upper Carboniferous dikes are based on the orogenesis during Upper Carboniferous time, causing numerous tectonical divisional planes in the sediments. Along these planes a far-reaching karstification took place since mesozoic time. According to their size the cavities are subdivided into macro-, mega- and microdikes. With the exception of one macrodike all the others are limited to the massive limestone. Megadikes especially occur in Upper Devonian cephalopod limestone and in the Erdbach limestone, microdikes can be found in all carbonatic rocks. The dikes follow pre-orogenic, tectonical and sedimentary divisional planes and are orientated to ac-, bc- as well as bedding planes and diagonal directions. The fillings happened down from above either in a solitary event or repeatedly in long-lived dikes during a span of several ten millions of years. More seldom the fillings took place laterally or upside from beneath. The dikes contain - without regard to autochthonous conodont faunas - older and/or younger mixed faunas, too. Occasionally they were used as life district by a trilobite fauna adapted to the dikes. The dikes represent sedimentary pitfalls and conserve sediments eroded in other places. Therefore, by aid of the fillings, it can be demonstrated, that stratigraphic gaps are not absolutely due to primary interruptions of sedimentation, but were caused by reworking. Some dikes contain the distal offsets of slides and suspension streams. Relations between condensation and development of dikes could not be derived in the Warstein area. However, an increase of the frequency of dikes towards east to the eastern margin of the Warstein carbonate platform could be pointed out. This margin is a slope, persisting more than 10 millions of years, between a block and a basin. Evidently cracks and dikes, which were caused by settlements, slides and earth quakes, occured there frequently. The Warstein dikes and cavities, caused by karstification, are filled with terrestrial Lower Cretaceous, marine Upper Cretaceous and terrestrial Pleistocene to Holocene sediments. Tertiary sediments could not be detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1986 participants of the Benthos Ecology Working Group of ICES conducted a synoptic mapping of the infauna of the southern and central North Sea. Together with a mapping of the infauna of the northern North Sea by Eleftheriou and Basford (1989, doi:10.1017/S0025315400049158) this provides the database for the description of the benthic infauna of the whole North Sea in this paper. Division of the infauna into assemblages by TWINSPAN analysis separated northern assemblages from southern assemblages along the 70 m depth contour. Assemblages were further separated by the 30, 50 m and 100 m depth contour as well as by the sediment type. In addition to widely distributed species, cold water species do not occur further south than the northern edge of the Dogger Bank, which corresponds to the 50 m depth contour. Warm water species were not found north of the 100 m depth contour. Some species occur on all types of sediment but most are restricted to a special sediment and therefore these species are limited in their distribution. The factors structuring species distributions and assemblages seem to be temperature, the influence of different water masses, e.g. Atlantic water, the type of sediment and the food supply to the benthos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains measurements of species-specific plant height: vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) measured for all sown species separetly in 2002. Data was recorded in the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2002, plant height was recorded two times: in late July (vegetative height) and just before biomass harvest during peak standing biomass in late August (vegetative and regenerative height). For each plot and each sown species in the species pool, 3 plant individuals (if present) from the central area of the plots were randomly selected and used to measure vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) as stretched height. Provided are the means over the three measuremnts per plant species per plot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2005 just prior to mowing (during peak standing biomass in late May and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in three (in May 2005) and four (August 2005) rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set contains aboveground community biomass (Sown plant community, measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested in September 2002 just prior to mowing (during peak standing biomass) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in one rectangle of 0.2 x 0.5 m per large plot. The location of the rectangle was assigned prior to harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangle within plots were identical for all plots. The harvested biomass was sorted into categories: in 2002 only individual species for the sown plant species were separated and processed. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set comprises a time series of aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice a year just prior to mowing (during peak standing biomass twice a year, generally in May and August; in 2002 only once in September) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in up to four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned by random selection of new coordinates every year within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HERMES cold-water coral database is a combination of historical and published sclerectinia cold-water coral occurrences (mainly Lophelia pertusa) and new records of the HERMES project along the European margin. This database will be updated if new findings are reported. New or historical data can be sent to Ben De Mol (mailto:bendemol@ub.edu). Besides geocodes a second category indicates the coral species and if they are sampled alive or dead. If absolute dating is available of the corals this is provide together with the method. Only the framework building cold-water corals are selected: Lophelia pertusa, Madrepora oculata and common cold-water corals often associated with the framework builders like: Desmophyllum sp and Dendrophylia sp. in comments other observed corals are indicated. Another field indicates if the corals are part of a large build-up or solitary. A third category of parameters is referencing to the quality of the represented data. In this category are the following parameters indicated: source of reference, source type (such as Fishermen location, scientific paper, cruise reports). sample code and or name and sample type (e.g. rock dredge, grab, video line). These parameters must allow an assessment of the quality of the described parameters.