20 resultados para skull ontogeny
Resumo:
To better understand the links between the carbon cycle and changes in past climate over tectonic timescales we need new geochemical proxy records of secular change in silicate weathering rates. A number of proxies are under development, but some of the most promising (e.g. palaeoseawater records of Li and Nd isotope change) can only be employed on such large samples of mono-specific foraminifera that application to the deep sea sediment core archive becomes highly problematic. "Dentoglobigerina" venezuelana presents a potentially attractive target for circumventing this problem because it is a typically large (> 355 ?m diameter), abundant and cosmopolitan planktic foraminifer that ranges from the early Oligocene to early Pliocene. Yet considerable taxonomic and ecological uncertainties associated with this taxon must first be addressed. Here, we assess the taxonomy, palaeoecology, and ontogeny of "D." venezuelana using stable isotope (oxygen and carbon) and Mg/Ca data measured in tests of late Oligocene to early Miocene age from Ocean Drilling Program (ODP) Site 925, on Ceara Rise, in the western equatorial Atlantic. To help constrain the depth habitat of "D." venezuelana relative to other species we report the stable isotope composition of selected planktic foraminifera species within Globigerina, Globigerinoides, Paragloborotalia and Catapsydrax. We define three morphotypes of "D." venezuelana based on the morphology of the final chamber and aperture architecture. We determine the trace element and stable isotope composition of each morphotype for different size fractions, to test the validity of pooling these morphotypes for the purposes of generating geochemical proxy datasets and to assess any ontogenetic variations in depth habitat. Our data indicate that "D." venezuelana maintains a lower thermocline depth habitat at Ceara Rise between 24 and 21 Ma. Comparing our results to published datasets we conclude that this lower thermocline depth ecology for the Oligo-Miocene is part of an Eocene-to-Pliocene evolution of depth habitat from surface to sub-thermocline for "D." venezuelana. Our size fraction data advocate the absence of photosymbionts in "D." venezuelana and suggest that juveniles calcify higher in the water column, descending into slightly deeper water during the later stages of its life cycle. Our morphotype data show that d18O and d13C variation between morphotypes is no greater than within-morphotype variability. This finding will permit future pooling of morphotypes in the generation of the "sample hungry" palaeoceanographic records.
Resumo:
Stable isotope analyses were performed on ontogenetic dissections of four taxa of low latitude Late Cretaceous planktonic foraminifera from DSDP Hole 390A. The species studied include Planoglobulina acervulinoides, Planoglobulina multicamerata, Pseudoguembelina palpebra, and Racemiguembelina fructicosa. Delta18O and delta13C data indicate a deeper surface water paleohabitat for P. multicamerata than the other three taxa, and ontogenetic increases in delta18O values suggest all these taxa underwent vertical migrations from shallow to deeper surface waters. Changes in delta13C values through ontogeny include sharp increases in delta13C composition in the juvenile size intervals, a decrease in the rate of delta13C change through intermediate size intervals, and reversals to a negative trend in delta13C values in terminal size intervals. The intermediate and terminal growth changes in delta13C signals are similar to ontogenetic trends observed in some extant and Paleogene planktonic foraminifera and may result from decreasing metabolic rates through ontogeny or endosymbiont digestion prior to gametogenesis. The ontogenetic delta13C increases of 1.04?, 0.76?, 0.83?, and 0.77? in R. fructicosa, P. palpebra, P. acervulinoides, and P. multicamerata, respectively, may indicate the presence of photosymbionts. However, our review and critique of the current literature discussing photosymbiont effects on stable isotope values in living and fossil planktonic foraminifera suggests that conclusions regarding the presence of photosymbionts in fossil taxa may be more equivocal than previously thought.
Resumo:
The seasonal vertical distribution of mesozooplankton was investigated in the Bornholm Basin in October 1988, July 1991 and April 1992 by means of horizontal tows using a small net with a mesh size of 47 micrometers. This study shows that the vertical distribution of multivoltine copepods is linked with ontogeny and may also change seasonally, even in shallow areas such as the Baltic. Trends between copepod species, stages and seasons were discovered. Secondly, the correlation was investigated between the vertical mesozooplankton distribution on the one hand and chlorophyll a concentration and the density of medusae and fish larvae on the other hand. In several cases the comparison of the shape of the profiles led to greater differentiation than the coefficient of correlation. The abundances found allowed only scant statements about non-copepod taxa.