520 resultados para silicon chemistry
Resumo:
Clay mineral and bulk chemical (Si, Al, K, Mg, Sr, La, Ce, Nd) analyses of terrigenous surface sediments on the Siberian-Arctic shelf indicate that there are five regions with distinct, or endmember, sedimentary compositions. The formation of these geochemical endmembers is controlled by sediment provenance and grain size sorting. (1) The shale endmember (Al, K and REE rich sediment) is eroded from fine-grained marine sedimentary rocks of the Verkhoyansk Mountains and Kolyma-Omolon superterrain, and discharged to the shelf by the Lena, Yana, Indigirka and Kolyma Rivers. (2) The basalt endmember (Mg rich) originates from NE Siberia's Okhotsk-Chukotsk volcanic belt and Bering Strait inflow, and is prevalent in Chukchi Sea Sediments. Concentrations of the volcanically derived clay mineral smectite are elevated in Chukchi fine-fraction sediments, corroborating the conclusion that Chukchi sediments are volcanic in origin. (3) The mature sandstone endmember (Si rich) is found proximal to Wrangel Island and sections of the Chukchi Sea's Siberian coast and is derived from the sedimentary Chukotka terrain that comprises these landmasses. (4) The immature sandstone endmember (Sr rich) is abundant in the New Siberian Island region and reflects inputs from sedimentary rocks that comprise the islands. (5) The immature sandstone endmember is also prevalent in the western Laptev Sea, where it is eroded from sedimentary deposits blanketing the Siberian platform that are compositionally similar to those on the New Siberian Islands. Western Laptev can be distinguished from New Siberian Island region sediments by their comparatively elevated smectite concentrations and the presence of the basalt endmember, which indicate Siberian platform flood basalts are also a source of western Laptev sediments. In certain locations grain size sorting noticeably affects shelf sediment chemistry. (1) Erosion of fines by currents and sediment ice rafting contributes to the formation of the coarse-grained sandstone endmembers. (2) Bathymetrically controlled grain size sorting, in which fines preferentially accumulate offshore in deeper, less energetic water, helps distribute the fine-grained shale and basalt endmembers. An important implication of these results is that the observed sedimentary geochemical endmembers provide new markers of sediment provenance, which can be used to track sediment transport, ice-rafted debris dispersal or the movement of particle-reactive contaminants.
Resumo:
Interstitial waters from several sites drilled during Leg 58 have been analyzed for major constituents. Data for Sites 442, 443, and 444 in Shikoku Basin indicate that only small changes occur in the chemical composition. We did not note any influence on the interstitial water chemistry resulting from reactions taking place in the underlying basalts. Site 445 data indicate that reactions must occur in the sediment column, leading to decreases in dissolved magnesium and increases in dissolved calcium. In addition, a source of dissolved calcium appears in the underlying basalts. At Site 446, changes appear in dissolved-calcium and -magnesium concentrations, resulting mainly from alteration reactions in the basalts. Dissolved potassium has its main sink in deeper-lying sediments or basalts. Changes in dissolved strontium at Sites 445 and 446 can be explained in terms of carbonate recrystallization. At all sites, changes in dissolved manganese and lithium appear to be related to the presence of biogenic silica in the sediments.
Resumo:
Black shale samples of Jurassic to Cretaceous age recovered during the 'Norwegian Shelf Drilling Program' between 1987 and 1991 from Sites 7430/10-U-01 (Barents Sea), 6814/04-U-02 (Norwegian Shelf near the Lofoten) and 6307/07-U-02 (Norwegian Shelf near Trondheim) were analyzed for major and trace elements. These laminated black shales are characterized by high total organic carbon (TOC) and total sulfur (TS) contents as well as by significant enrichments in several redox-sensitive and/or sulfide-forming trace metals (Ag, Bi, Cd, Co, Cr, Cu, Mo, Ni, Re, Sb, Tl, U, V, and Zn). Enrichment factors relative to 'average shale' are comparable to those found in Cenomanian-Turonian boundary event (CTBE) black shales and Mediterranean sapropels. The Re content is high in the studied black shales, with maximum values up to 1221 ng/g. Re/Mo ratios averaging 2.3*10**-3 are close to the seawater value. High trace metal enrichments and Re/Mo ratios close to the seawater value point to a dominantly anoxic and sulfidic water column during black shale formation. Interbeds with higher Re/Mo ratios, especially in high-resolution sampled core sections, point to brief periods of suboxic conditions. Additionally, enhanced Zn concentrations in the black shales from the Barents Sea support the assumption that hydrothermal activity was also high during black shale deposition. Trace metal signatures of black shales at different drill sites on a transect along the Norwegian Shelf are not only influenced by water depth but also by their location in the boreal realm. Metal enrichments are higher in the northern compared to the southern sites. Volgian (=Tithonian 151-144 Ma BP) black shales exhibit elevated trace metal contents in comparison to their Berriasian (144-137 Ma BP) counterparts. This probably reflects a change in the circulation pattern during periods of black shale formation. Therefore different paleoceanographic conditions, probably controlled by climatic change linked to the transgression of the paleo-sealevel and the North Atlantic opening, may have developed from the Volgian to the Berriasian.
Resumo:
Two cores from the southern South China Sea contain discrete ash layers that mainly consist of rhyolithic glass shards. On the basis of the SPECMAP time scale, the ash layers were dated to ca. 74 ka, the age of the youngest Toba eruption in northern Sumatra. This link is supported by the chemical composition of the glass, which is distinct from volcanic glass supplied from the Philippines and the northern South China Sea, but is almost identical with the chemistry of the Toba ash. The youngest Toba ash layers in the South China Sea expand the previously known ash-fall zone over more than 1800 km to the east. The dispersal of ashes from Sumatra in both western and eastern directions indicates two contrasting wind directions and suggests that (1) the Toba eruption probably happened during the Southeast Asian summer monsoon season, and (2) the volume of erupted magma was larger than previously interpreted.
Resumo:
Analyses of water samples taken by means of an in-hole sampler generally show good agreement with analyses of samples collected by routine shipboard squeezing techniques. At Sites 438 and 439, a decrease in salinity with depth is related to former freshwater flow from an aquifer that crops out at an anticline on a deep sea terrace between Japan and the top of the trench slope of the Japan Trench. This former subaerial recharge suggests significant late Cenozoic subsidence of the terrace, because it now lies at a water depth of 1500 meters. Samples from the trench slope at Site 440 have extremely high values of alkalinity and ammonia, presumably because of a favorable combination of high sedimentation rate and organic carbon content. Diagenetic conditions on the trench slope favor formation of the Fe-Mg carbonate mineral, ankerite; at Site 440 it first occurs at a depth below the sea floor of only 29 meters in late Pleistocene strata. Undissolved diatoms persist to relatively great depth at the sites of Leg 57 because of a low geothermal gradient caused by subduction. Secondary silica lepispheres first appear at 851 meters at the most landward and warmest site, Site 438, in strata 16 million years old with an ambient temperature of 31 °C.