160 resultados para short-2


Relevância:

30.00% 30.00%

Publicador:

Resumo:

yResults of 13 field investigations between 1966 and 1990 of the southwestern to eastern margin of Kötlujökull and its proglacial area are summarized with respect to sandar and their formation. Generally, the results are based on sedimentological examinations in the field and laboratory, on analyses of aerial photographs, and investigations of the glacier slope. The methods permitted a more detailed reconstruction of sandar evolution in the proglacial area of Kötlujökull since 1945, of tendencies in development and of single data going back until the last decades of the 19th century. Accordingly, there existed special periods of "flachsander"-formations with raised coarsegrained "sanderwurzels" resultant from the outbreak of subglacial meltwater tunneloutlets and other periods with "hochsander-"formations by supraglacial drainage. At present the belts of hochsanders in front of the glacier come up to more than 4 m in thickness and 1000 m in width, therefore containing perhaps more sediment direct in front of Kötlujökull than the old belts of flachsanderwurzels. In one case the explosion-like subglacial meltwater outburst combined with the genesis of a sanderwurzel could be observed for a time and is thoroughly discussed. The event is referred to the outburst of a sub- to inglacial meltwater body being under extreme hydrostatic press ures which is combined with the genesis of a new subglacial tunneloutlet as a new flachsander. Often these outbursts led to the destruction of a morainic belt more than 1000 m in width. Presumably the whole event was finished in not more than a few days. In addition to a characteristic pear-shaped form and water-moved stones up to diameters of 1 m the wurzels possess a single "main-channel" with rectangular cross-sections as far as 4 m deep and 50 m wide just as small flat channels resembling fish bones in connection with the main channel. Presumably, they have been active only in the last stage of wurzel formation. With regard to the subglacial tunnel gates long-living L-meltwater outlets are distinguished from short-living K-meltwater outlets. These are always combined with a raised coarse-grained sanderwurzel, but its meltwater discharge is generally decreasing and ceases after some years, whereas the discharge of L-meltwater outlets continues unchanged for long times (except seasonal differences). The material of flachsanders is preponderantly composed of mugearitic and andesitic cobble extending at least for some kilometres from the glacier margin, whereas the hochsanders correspond to medium to coarse sands without clay and without alternations into the direction of flow. The hochsander fans are covered with small braidet channels. Their sedimentary structures are determined by the short time changing of supraglacial meltwater discharge and the upper flow regime combined with the development of antidunes, which rule the channel-flows during the main activity periods in summer. Unlike the subglacial drainage the supraglacial drainage led to only weak effects of erosion on the glacier foreland. So the hochsanders refilled depressions of morainic areas or grew up on older flachsanderwurzels. Whereas all large flachsanders developed in front of approximate stationary glacier margins, the evolution of coherent belts of hochsanders were combined with progressive glacier fronts. On the other hand, there was obviously no evolution at all of large sandar in front of back-melting margins of Kötlujökull. Based on examinations of the glacier surface and on analyses of aerial photographs the different types of sandar are referred to different structures of the glacier snout. Finally chances of surviving of sandar in the proglacial area of Kötlujökull are shortly discussed just as the possibility of an application of the Islandic research results on Pleistocene sandar in northern Germany.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution planktonic foraminifer record from a core recovered from the South China Sea (SCS) (Sonne 17938-2: 19°47.2'N, 117° 32.3E; 2840 m; Delta t c. 250-1000 years) shows rapid millennial-scale changes in the western Pacific marginal sea climate during the last 30,000 years. The SCS is the largest western Pacific marginal sea off the southeast Asian continent, the area today dominated by seasonal monsoon changes. Quantitative analyses of planktonic foraminifer faunal abundance data frorn the core indicate large downcore variations in the relative abundances of the dominant taxa since about 30,000 years ago in the isotope stage 3. Further analyses indicate that the abundance of G. inflata, a good indicator species for cold SST (~13°-19°C) and deep MLD (~100-125 m) waters shows abrupt shifts. During stages 2 and 3, the abundance record of G. infiata tends to be punctuated by quasi-periodie short intervals (~2000-3000 yrs) where its abundance reaches 15% or greater, superimposed on generally low (5-10%) background values. This pattern suggests an instability of surface ocean conditions of the SCS during the past 30,000 years. The abrupt abundance changes of G. infiata correlate well with similar climatic changes observed from a GISP2 ice core 8180, and North Atlantic core DSDP 609 N. pachyderma (s.) and lithic grain abundances during 'Heinrich evcnts'. These results suggest that the millennial-scale variability of climate is not peculiar to the Atlantic region. Apparently, the rapid SCS climatic changes during Heinrich events are driven by effective mechanisms, of particularly the effects of shifts in the latitudinal position of the Siberia High Pressure System.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sub-Arctic marine ecosystems are some of the most productive ecosystems in the world's oceans. The capacity of herbivorous zooplankton, such as Calanus, to biosynthesize and store large amounts of lipids during the short and intense spring bloom is a fundamental adaptation which facilitates the large production in these ecosystems. These energy-rich lipids are rapidly transferred through the food chain to Arctic seals. The fatty acids and stable isotopes from harp seal (Phoca groenlandica) and hooded seal (Cystophora cristata) off East Greenland as well as their potential prey, were analysed. The results were used to describe the lipid dynamics and energy transfer in parts of the East Greenland ecosystem. Even if the two seal species showed considerable overlap in diet and occurred at relatively similar trophic levels, the fatty acid profiles indicated that the bases of the food chains of harp and hooded seals were different. The fatty acids of harp seals originate from diatom-based food chain, whereas the fatty acids of hooded seals originate from dinoflagellate and the prymnesiophyte Phaeocystis pouchetii-based food chain. Stable isotope analyses showed that both species are true carnivores on the top of their food chains, with hooded seal being slightly higher on the food chain than harp seal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the Atlantic expedition potential gradient, small ion density and space charge density have been recorded. Laborious efforts have been taken for receiving an exact estimation of the reduction factor for the field measurements. The mean value of the potential gradient on the free Atlantic Ocean was 105 V/m. The mean daily course is in very good agreement with the results of the Carnegie Institution. Even records taken on individual days near the quator show this course. For the first time it has been attempted to correlate the potential gradient at sea and the voltage between ionosphere and earth measured over land. A narrow relation has been found in 10 cases of balloon ascents with radiosondes. A further remarkable result is, that the short periodical fluctuations of the air electric field at sea with periods of 2 to 20 minutes have amplitudes of the magnitude of the mean field strength and exist all over the oceans. Recordings of the space charge density show, that positively charged air parcels drift in the first hectometer of the air near the sea surface and produce the fluctuation of the potential gradient. A period analysis did not indicate a recognizable relation to the wind velocity up to now, although an effect of air turbulence must be involved. The concentration of small ions also has been measured occasionally. With this and mean values of the potential gradient the air earth curent density has been computed. With n+ = 310 cm**-3, n- = 220 cm**-3 the air conductivity would be Lambda = 1,14 * 10**-14 Ohm**-1 m**-1. These values are smaller than values of other authors by a factor of 2 or 3. Therefore the computed air earth current density is also smaller. The discrepancy could not be explained yet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting the impact of ongoing anthropogenic CO2 emissions on calcifying marine organisms is complex, owing to the synergy between direct changes (acidification) and indirect changes through climate change (e.g., warming, changes in ocean circulation, and deoxygenation). Laboratory experiments, particularly on longer-lived organisms, tend to be too short to reveal the potential of organisms to acclimatize, adapt, or evolve and usually do not incorporate multiple stressors. We studied two examples of rapid carbon release in the geological record, Eocene Thermal Maximum 2 (~53.2 Ma) and the Paleocene Eocene Thermal Maximum (PETM, ~55.5 Ma), the best analogs over the last 65 Ma for future ocean acidification related to high atmospheric CO2 levels. We use benthic foraminifers, which suffered severe extinction during the PETM, as a model group. Using synchrotron radiation X-ray tomographic microscopy, we reconstruct the calcification response of survivor species and find, contrary to expectations, that calcification significantly increased during the PETM. In contrast, there was no significant response to the smaller Eocene Thermal Maximum 2, which was associated with a minor change in diversity only. These observations suggest that there is a response threshold for extinction and calcification response, while highlighting the utility of the geological record in helping constrain the sensitivity of biotic response to environmental change.