432 resultados para sedimentary petrology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basement lavas from Sites 756, 757, and 758 on Ninetyeast Ridge are tholeiitic basalts. Lavas from Sites 756 and 757 appear to be subaerial eruptives, but the lowermost flows from Hole 758A are pillow lavas. In contrast to the compositional variation during the waning stages of Hawaiian volcanism, no alkalic lavas have been recovered from Ninetyeast Ridge and highly evolved lavas were recovered from only one of seven drill sites (DSDP Site 214). All lavas from Site 758 have relatively high MgO contents (8-10 wt%), and they are less evolved than lavas from Sites 756 and 757. Although abundances of alkali metals in these Ninetyeast Ridge basalts were significantly modified by postmagmatic alteration, abundances of other elements reflect magmatic processes. At Site 757 most of the lavas are Plagioclase cumulates, but lava compositions require two compositionally distinct, AhCb-rich parental magmas, perhaps segregated at relatively low mantle pressures. In addition, at both Sites 756 and 758 more than one compositionally distinct parental magma is required. The compositions of these Ninetyeast Ridge lavas, especially those from Site 758, require a source component with a depleted composition; specifically, the abundance ratios Th/Ta, Th/La, Ba/Nb, Ba/La, and La/Ce in these lavas are generally less than the ratios inferred for primitive mantle. Lavas from Ninetyeast Ridge and the Kerguelen Archipelago have very different chondrite-normalized REE patterns, with lower light REE/heavy REE (LREE/HREE) ratios in lavas from Ninetyeast Ridge. However, lavas from Sites 757 and 758 have Pb isotope ratios that overlap with the field defined by lavas from the Kerguelen Archipelago (Weis and Frey, this volume). Therefore, these Ninetyeast Ridge lavas contain more of a component that is relatively depleted in LREE and other highly incompatible elements, but have similar amounts of the component that controls radiogenic Pb isotopes. A model involving mixing between components related to a depleted source and an enriched plume source has been proposed for the oldest Kerguelen Archipelago basalts and Ninetyeast Ridge lavas. Although the incompatible element characteristics of the Ninetyeast Ridge lavas are intermediate between depleted MORB and Kerguelen Archipelago basalts, these data are not consistent with a simple two-component mixing process. A more complex model is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chemical and petrologic study of rocks from Site 448 on the Palau-Kyushu Ridge is designed to answer some fundamental questions concerning the volcanic origin of remnant island arcs. According to the reconstruction of the Western Pacific prior to about 45 m.y. ago (Hilde et al., 1977), the site of the Palau-Kyushu Ridge was a major transform fault. From a synthesis of existing geological and geophysical data (R. Scott et al., this volume), it appears that the ridge originated by subduction of the Pacific plate under the West Philippine Basin. Thus the Palau-Kyushu Ridge should be a prime example of both initial volcanism of an incipient arc formed by interaction of oceanic lithospheric plates and remnant-arc volcanic evolution. The Palau-Kyushu Ridge was an active island arc from about 42 to 30 m.y. ago, after which initiation of back-arc spreading formed the Parece Vela Basin (R. Scott et al., this volume; Karig, 1975a). This spreading left the western portion of the ridge as a remnant arc that separates the West Philippine Basin from the Parece Vela Basin. In spite of numerous oceanographic expeditions to the Philippine Sea, including the two previous DSDP Legs 6 and 31 (Fischer, Heezen et al., 1971; Karig, Ingle et al., 1975), and even though the origins of inter-arc basins have been linked by various hypotheses to that of remnant island arcs (Karig, 1971, 1972, 1975a, and 1975b; Gill, 1976; Uyeda and Ben-Avraham, 1972; Hilde et al., 1977), very little hard data are available on inactive remnant arcs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft-sediment deformation structures have been analyzed at six sites of the Kathmandu valley. Microgranulometric study (this Supplement and Fig. 3B of Mugnier et al., Tectonophysics, 2011) reveals that silty levels (60 to 80% silt) favor the development of soft-sediment deformation structures, while sandy levels (60 to 80% sand) are passively deformed. Nonetheless well sorted sand levels (more than 80% sand) generate over-fluid pressure during compaction if located beneath a silty cap, leading to fluidization and dike development. 3-D geometry of seismites indicates a very strong horizontal shearing during their development. Using a physical approach based on soil liquefaction during horizontal acceleration, we show that the fluidization zone progressively grows down-section during the shaking, but does not exactly begin at the surface. The comparison of bed-thickness and strength/depth evolution indicates three cases: i) no soft-sediment deformation occurs for thin (few centimeters) silty beds; ii) the thickness of soft-sediment deformation above sandy beds is controlled by the lithological contrast; iii) the thickness of soft-sediment deformation depends on the shaking intensity for very thick silty beds. These 3 cases are evidenced in the Kathmandu basin. We use the 30 cm-thick soft-sediment deformation level formed during the 1833 earthquake as a reference: the 1833 earthquake rupture zone extended very close to Kathmandu, inducing there MMI IX-X damages. A 90 cm-thick sediment deformation has therefore to be induced by an event greater than MMI X. From a compilation of paleo and historic seismology studies, it is found that the great (M ~ 8.1) historical earthquakes are not characteristic of the greatest earthquakes of Himalaya; hence earthquakes greater than M ~ 8.6 occurred. Kathmandu is located above one of the asperities that laterally limits the extent of mega-earthquake ruptures and two successive catastrophic events already affected Kathmandu, in 1255 located to the west of this asperity and in ~ 1100 to the east.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sandstone succession in the lower 240 meters of DSDP Site 445, on the Daito Ridge, provided an opportunity to evaluate the effect of burial diagenesis of sandstones in a deep hole in a tectonic environment (remnant arc) characterized by a history of high heat flow. This report provides preliminary data concerning the petrology and diagenesis of these sandstones and records diagenetic changes which have occurred with increasing depth of burial. Methods used for this study included grain-size analysis (measured from thin sections using the method of Friedman, 1958), polarizing microscopy, X-ray diffraction, and scanning electron microscopy. A JEOL scanning electron microscope fitted with an energydispersive- X-ray detector was used for obtaining qualitative chemical data on certain minerals to aid in identification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

About 13 m of Cretaceous, tholeiitic basalt, ranging from normal (N-MORB) to transitional (T-MORB) mid-ocean-ridge basalts, was recovered at Ocean Drilling Program Site 843 west of the island of Hawaii. These moderately fractionated, aphyric lavas are probably representative of the oceanic basement on which the Hawaiian Islands were built. Whole-rock samples from parts of the cores exhibiting only slight, low-temperature, seawater alteration were analyzed for major element, trace element, and isotopic composition. The basalts are characterized by enrichment in the high field strength elements relative to N-MORB, by a distinct positive Eu anomaly, and by Ba/Nb and La/Nb ratios that are much lower than those of other crustal or mantle-derived rocks, but their isotope ratios are similar to those of present-day N-MORB from the East Pacific Rise. Hole 843A lavas are isotopically indistinguishable from Hole 843B lavas and are probably derived from the same source at a lower degree of partial melting, as indicated by lower Y/Nb and Zr/Nb ratios and by higher concentrations of light and middle rare earth elements and other incompatible elements relative to Hole 843B lavas. Petrographic and trace-element evidence indicates that the Eu anomaly was the result of neither plagioclase assimilation nor seawater alteration. The Eu anomaly and the enrichments in Ta, Nb, and possibly U and K relative to N-MORB apparently are characteristic of the mantle source. Age-corrected Nd and Sr isotopic ratios indicate that the source for the lavas recovered at ODP Site 843 was similar to the source for Southeast Pacific MORB. An enriched component within the Cretaceous mantle source of these basalts is suggested by their initial 208Pb/204Pb-206Pb/204Pb and epsilon-Nd-206Pb/204Pb ratios. The Sr-Pb isotopic trend of Hawaiian post-shield and post-erosional lavas cannot be explained by assimilation of oceanic crust with the isotopic composition of the Site 843 basalts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reentry of Hole 462A during Leg 89 resulted in the penetration of a further 140 m of basalt sheet-flows similar to those found during Leg 61 at the same site. Twelve volcanic units (45 to 56) were recognized, comprising a series of rapidly extruded, interlayered aphyric and poorly clinopyroxene-plagioclase-olivine phyric, nonvesicular basalts. All exhibit variable, mild hydration and oxidation, relative to fresh oceanic basalts, produced under reducing, low-CO2-activity conditions within the zeolite facies. Secondary assemblages are dominated by smectites, zeolites, and pyrite, produced by low-temperature reaction with poorly oxygenated seawater. No systematic mineralogical or chemical changes are observed with depth, although thin quenched units and more massive hypocrystalline units exhibit slightly different alteration parageneses. Chemically, the basalts are olivine- and quartz-normative tholeiites, characterized by low incompatible-element abundances, similar to mildly enriched MORB (approaching T-type), with moderate, chrondite-normalized, large-ionlithophile- element depletion patterns and generally lower or near-chrondritic ratios for many low-distribution-coefficient (KD) element pairs. In general, relative to cyclic MORB chemical variation, they are uniform throughout, although 3 chemical megagroups and 22 subgroups are recognized. It is considered that the megagroups represent separate low-pressure-fractionated systems (olivine + Plagioclase ± clinopyroxene), whereas minor variations within them (subgroups) indicate magma mixing and generation of near-steady-state conditions. Overall, relatively minor fractionation coupled with magma mixing produced a series of compositionally uniform lavas. Parental melts were produced by similar degrees of partial melting, although the source may have varied slightly in LIL-element content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the importance of the inversion of seamount magnetic anomalies, particularly to the motion of the Pacific plate, it is important to gain a better understanding of the nature of the magnetic source of these features. Although different in detail, Ninetyeast Ridge is composed of submarine and subaerial igneous rocks that are similar to those found at many seamounts, making it a suitable proxy. We report here on the magnetic petrology of a collection of samples from Ninetyeast Ridge in the Indian Ocean. Our purpose is to determine the relationship between primary petrology, subsequent alteration, and magnetic properties of the recovered rocks. Such information will eventually lead to a more complete understanding of the magnetization of seamounts and presumably improvements in the accuracy of anomaly inversions. Three basement sites were drilled on Ninetyeast Ridge, with recovery of subaerial basalt flows at the first two (Sites 756 and 757) and submarine massive and pillow flows at the final one (Site 758). The three sites were distinctly different. Site 756 was dominated by ilmenite. What titanomagnetite was present had undergone deuteric alteration and secondary hematite was present in many samples. The magnetization was moderate and stable although it yielded a paleolatitude somewhat lower than expected. Site 757 was highly oxidized, presumably while above sea level. It was dominated by primary titanomagnetite, which was deuterically altered. Secondary hematite was common. Magnetization was relatively weak but quite stable. The paleolatitude for all but the lowermost flows was approximately 40° lower than expected. Site 758 was also dominated by primary titanomagnetite. There was relatively little oxidation with most primary titanomagnetite showing no evidence of high-temperature alteration. No secondary hematite was in evidence. This site had the highest magnetization of the three (although somewhat low relative to other seamounts) but was relatively unstable with significant viscous remanence in many samples. Paleolatitude was close to the expected value. It is not possible, at present, to confidently associate these rocks with specific locations in a seamount structure. A possible and highly speculative model would place rocks similar to Site 757 near the top of the edifice, Site 756 lower down but still erupted above sea level, and Site 758 underlying these units, erupted while the seamount was still below sea level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed data obtained on chemistry of sedimentary rocks from the Mountainous Crimea and the Northwestern Caucasus that were dated at the Cenomanian/Turonian boundary and formed during Oceanic Anoxic Event 2 make it possible to calculate dissolved oxygen concentration in bottom waters of the sedimentation basin. Enrichment factors of trace elements in black shales are revised and an explanation is suggested for genesis of the rocks with regard for unusual climatic changes.