48 resultados para seaweeds of Kerala coast
Resumo:
Six species of penguins breed on the Antarctic continent, the Antarctic Peninsula, the South Shetland and South Orkney Islands. Their breeding populations within the Antarctic Peninsula, and the South Orkney and South Shetland Is., and estimates of global populations are given. Typical breeding seasons are also presented, but it must be noted that these will vary inter-annually and intra-annually under the influence of factors such as sea-ice extent and ENSO (interannual) and the location of each breeding colony (southerly localities will be later than northerly localities, as their breeding season is "compressed" within the shorter summer). Their foraging strategies (categorized as near-shore or offshore) and typical durations of foraging trips are also tabulated. As with breeding season events, foraging behaviour will vary intra-seasonally and inter-seasonally (in terms of dive duration, dive depth, foraging location, etc). The distribution of known penguin breeding colonies is circum-continental, with Emperor and Adelie penguins predominant on approximately 75 % of the coast, with two major concentrations in the Ross Sea and in Prydz Bay. The third concentration is in the Antarctic Peninsula region, where some of the largest penguin colonies are present. All six species breed within the area (predominantly Chinstrap Penguins), and the Peninsula region has a greater diversity than the remainder ofthe Antarctic with respect to penguins. The distribution at sea of nonbreeding penguins is less cIear. Non-breeding individuals of all six species move throughout the Southern Ocean, and in many cases, to areas well north of the winter pack-ice zone. However, it is not possible to estimate densities of penguins at sea as there are no estimates of non-breeding penguin populations the extent of their travels.
Resumo:
On the base of detailed studies in the Keret' and Kem' estuaries (Karelian coast of the White Sea) in 2000-2003 a comparative analysis has been carried out. It includes: salinity and freshening of the water column, variations of suspended matter concentration and its chemical composition, current velocity and zooplankton species composition during flood- and ebb tides.
Resumo:
The dataset is based on samples collected in the autumn of 2001 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 42 samples (from 19 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in the layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
(Table 4) Concentration of suspended matter in waters of the River Kem' estuary on 25-28 August 2002
Resumo:
The "Hydroblack91" dataset is based on samples collected in the summer of 1991 and covers part of North-Western in front of Romanian coast and Western Black Sea (Bulgarian coasts) (between 43°30' - 42°10' N latitude and 28°40'- 31°45' E longitude). Mesozooplankton sampling was undertaken at 20 stations. The whole dataset is composed of 72 samples with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected materia was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m3. WW were converted to DW by equation DW=0.16*WW (Vinogradov ME, Sushkina EA, 1987).
Resumo:
Mr. John Murray, to whom the specimens of bottom deposits collected by the "Blake" were sent for examination, looked over the whole and selected some typical specimens. These have been described in detail, and he has added some general notes on the specimens characteristic, 1. of the Coast between the Gulf of Maine and Cape Hatteras; 2. of thee coast between Cape Hatteras and Lat. 31? 48' N.; 3. of the coasts around the greater and lesser Antilles ; and, finally, of the Gulf of Mexico and Straits of Florida.