135 resultados para runoff
Resumo:
The Arctic hydrological cycle throughout the Holocene is analyzed based on the results of transient simulations with the coupled atmosphere-ocean circulation model ECHO-G. The results suggest a ~ 2 % increase of mid-Holocene to preindustrial Arctic river discharges for the Eurasian continent. However, rivers of the North America Arctic realm show a moderate runoff decline of approximately 4 to 5 % for the same period. The total river discharge into the Arctic Ocean has remained at an approximately constant preindustrial level since the mid Holocene. The positive discharge trend within Eurasia is caused by a more rapid decrease in local net evaporation compared to a smaller decline in advected moisture and hence precipitation. This effect is neither recognized within the North American Arctic domain nor in the far eastern part of the Eurasian Arctic realm. A detailed comparison of these model findings with a variety of proxy studies is conducted. The collected proxy records show trends of continental surface temperatures and precipitation rates that are consistent with the simulations. A continuation of the transient Holocene runs for the 19th and 20th century with increased greenhouse gases indicates an increase of the total river influx into the Arctic Ocean of up to 7.6 %. The Eurasian river discharges increase by 7.5 %, the North American discharges by up to 8.4 %. The most rapid increases have been detected since the beginning of the 20th century. These results are corroborated by the observed rising of Arctic river discharges during the last century which is attributed to anthropogenic warming. The acceleration of the Arctic hydrological cycle in the 20th century is without precedence in the Holocene.
Resumo:
Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.
Resumo:
A sedimentary sequence documenting the early history of the proto-Indian Ocean was drilled at Site 761 on the Wombat Plateau, northwest Australia. Directly above the post-rift unconformity, two lithologic units were recovered which reflect deposition in incipient oceanic environments. The lower unit, composed of sandstone, contains abundant belemnites and a few lenses composed of low-diversity coccolith assemblages. The second unit, composed of chalk, contains abundant calcispheres, thoracospheres, low-diversity coccolith assemblages, and a few radiolarians. Belemnites and organisms that produced calcispheres and thoracospheres are thought to be opportunistic. Their abundance, and the absence of a normal marine fauna and flora, reflects an unstable early ocean environment. Stable oxygen and carbon isotopic data for the two units fall into almost separate fields. Heavy delta18O values for the belemnites indicate that they have not been affected by recrystallization. Instead, these isotopic values are thought to indicate either the deep, cool habitat of the belemnites or strong vital effects. A bulk chalk delta18O value from the belemnite sand is 3 to 4 parts per mil lighter than the belemnite delta18O values, possibly because it is largely composed of coccoliths which inhabited warmer surface waters. Light delta13C values for bulk calcisphere-bearing nannofossil chalk samples are thought to be a direct result of upwelling or of vital effects. Heavy delta18O values for the chalk unit are interpreted as resulting from upwelling of cool waters. Assemblage and isotopic data are consistent with this incipient ocean basin being highly productive, either as a result of upwelling or runoff of nutrient-rich waters from nearby land areas. However, it is not possible to rule out the control of vital effects on the isotopic signature of any of the fossil groups.
Resumo:
The carbonate saturation profile of the oceans shoaled markedly during a transient global warming event known as the Paleocene-Eocene thermal maximum (PETM) (circa 55 Ma). The rapid release of large quantities of carbon into the ocean-atmosphere system is believed to have triggered this intense episode of dissolution along with a negative carbon isotope excursion (CIE). The brevity (120-220 kyr) of the PETM reflects the rapid enhancement of negative feedback mechanisms within Earth's exogenic carbon cycle that served the dual function of buffering ocean pH and reducing atmospheric greenhouse gas levels. Detailed study of the PETM stratigraphy from Ocean Drilling Program Site 690 (Weddell Sea) reveals that the CIE recovery period, which postdates the CIE onset by ~80 kyr, is represented by an expanded (~2.5 m thick) interval containing a unique planktic foraminiferal assemblage strongly diluted by coccolithophore carbonate. Collectively, the micropaleontological and sedimentological changes preserved within the CIE recovery interval reflect a transient state when ocean-atmosphere chemistry fostered prolific coccolithophore blooms that suppressed the local lysocline to relatively deeper depths. A prominent peak in the abundance of the clay mineral kaolinite is associated with the CIE recovery interval, indicating that continental weathering/runoff intensified at this time as well (Robert and Kennett, 1994). Such parallel stratigraphic changes are generally consonant with the hypothesis that enhanced continental weathering/runoff and carbonate precipitation helped sequester carbon during the PETM recovery period (e.g., Dickens et al., 1997, doi:10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2 ; Zachos et al., 2005, doi:10.1126/science.1109004).
Resumo:
Biogenic opal and organic carbon vertical rain rates in sediment cores reveal a strong cyclicity in the productivity of the upwelling system off presently arid northern Chile during the last 100,000 years. Changes in productivity are found to be in phase with the precessional cycle (~20,000 years) and with inputs of iron from the continent. During austral summer insolation maxima, increased precipitation and river runoff in the region appear to have brought high inputs of iron, mainly from the Andes, to the coastal ocean enhancing primary productivity there. We interpret our results as providing evidence for iron control of past productivity in this upwelling system and for a tight link between productivity and orbital forcing at midlatitudes.
Resumo:
A Mediterranean composite sedimentary record was analyzed for Ba/Ca ratios on carbonate shells of Orbulina universa planktonic foraminifer (Ba/Ca)carb providing the opportunity to study and assess the extent of freshwater inputs on the basin and possible impacts on its dynamics during the Tortonian to Recent period. A number of scanning electron microscope analyses and auxiliary trace element measurements (Mn, Sr, and Mg), obtained from the same samples, exclude important diagenetic effects on the studied biogenic carbonates and corroborate the reliability of (Ba/Ca)carb ratios in foraminifera calcite as indicators of seawater source components during the studied interval. A long-term trend with (Ba/Ca)carb values shifting from ~7 to 3 µmol/mol from the base of the Tortonian to the top of the Messinian is observed. The interval of the late Messinian salinity crisis, where biogenic carbonates are missing or strongly diagenized, represents a crucial passage not monitored in our record. At the base of the Pliocene, up to about 4.7 Ma, the (Ba/Ca)carb record shows a decreasing trend from ~4 µmol/mol stabilizing itself to an about constant value of 0.9 ± 0.3 µmol/mol for the whole Plio-Pleistocene interval. These results suggest a dramatic change in the continental runoff values, up to ~3-16 times higher during part of the late Neogene (Tortonian-early Pliocene), with a possible profound modification in the physical dynamics of the Mediterranean basin. First-order mass balance equations used to estimate barium and salinity budgets in the Mediterranean Sea during the late Miocene-early Pliocene interval support the hypothesis of an active connection of the basin with the Paratethys region and of a definitive restriction at the base of the Pliocene after about 0.7 Ma from the well-known Messinian Lagomare phase. They also open intriguing scenarios on possible circulation shifts during the Neogene.
Resumo:
This paper analyzes the hydrological processes and the impact of soil properties and land use on these processes in tropical headwater catchment in the sub-humid part of Benin (West-Africa), the Aguima catchment. The presented study is integrated in the GLOWA IMPETUS project, which investigates the effects of global change on the water cycle and water availability on a regional scale in Morocco and Benin. The lack of field investigations concerning soil and surface hydrology in the Benin research area necessitates detailed field measurements including measurements of discharge, soil water dynamics, soil physical properties etc. on the local scale in order to understand the dominant runoff generation processes and its influencing factors. This is a pre-requisite to be able to forecast the effects which global change has on hydrological processes and water availability in the region. The paper gives an overview over the hydrologic measuring concept of the IMPETUS-Benin project focusing on measurements concerning the soil saturated conductivity ksat and discharge behaviour of two different sub-catchment of the Aguima catchment. The results of ksat measurements revealed that interflow is the dominant runoff process on the hillslopes of the investigated catchment. Concerning the impact of land use on the hydrological processes infiltration experiments showed that infiltration rates were reduced on cultivated land compared to natural land cover. This results in significant differences in runoff behaviour and runoff ratios while comparing natural and agricultural used catchments.
Resumo:
A multiparameter investigation including organic carbon, carbonate, opal, and planktic foraminifera was carried out on five sediment cores from the coastal upwelling area between 24°S and 33°S along the Peru-Chile Current to reconstruct the history of the paleoproductivity and its driving mechanisms during the last 40,000 years. Inferred from our data, we conclude that the Antarctic Circumpolar Current as the main nutrient source in this region mainly drives the productivity by its latitudinal shifts associated with climate change. Simplified, its northerly position during the last glacial led to enhanced productivities, and its southerly position during the Holocene caused lower productivities. At 33°S the paleoproductivity was additionally affected by the southern westerlies and records highest levels during the Last Glacial Maximum (LGM). North of 33°S, several factors (e.g., position and strength of the South Pacific anticyclone, wind stress, continental runoff, and El Niño Southern Oscillation events) supplementary influenced upwelling and paleoproductivity, where maximum values occurred prior to the LGM and during the deglaciation.
Resumo:
Iron and manganese in bottom sediments studied along the sublatitudinal transect from Kandalaksha to Arkhangelsk are characterized by various contents and speciations depending on sedimentation environment, grain size of sediments, and diagenetic processes. The latter include redistribution of reactive forms leading to enrichment in Fe and Mn of surface sediments, formation of films, incrustations, and ferromanganese nodules. Variations in total Fe content (2-8%) are accompanied by changes in concentration of its reactive forms (acid extraction) and concentration of dissolved Fe in interstitial waters (1-14 µM). Variations in Mn content in bottom sediments (0.03-3.7%) and interstitial waters (up to 500 µM) correspond to high diagenetic mobility of this element. Changes in oxidation degree of chemical elements result in redox stratification of sediment strata with maximum concentrations of Fe, Mn, and sulfides. Organic matter of bottom sediments with considerable terrestrial constituent is oxidized by bottom water oxygen mainly at the sediment surface or in anaerobic conditions within the sediment strata. The role of inorganic components in organic matter oxidation changes from surface layer bottom sediments (where manganese oxyhydroxide dominates among oxidants) to deeper layers (where sulfate of interstitial water serves as the main oxidant). Differences in river runoff and hydrodynamics are responsible for geochemical asymmetry of the transect. The deep Kandalaksha Bay serves as a sediment trap for manganese (Mn content in sediments varies within 0.5-0.7%), whereas the sedimentary environment in the Dvina Bay promotes its removal from bottom sediments (Mn 0.05%).
Resumo:
These studies were performed from September 10 to 29, 2007 in the Kara Sea in transects westward of the Yamal Peninsula, near the St. Anna Trough, in the Ob River estuary (Obskay Guba), and on the adjacent shelf. Concentration of chlorophyll a in the euphotic layer varied from 0.02 to 4.37 µg/l, aver. 0.76 µg/l. Primary production in the water column varied from 10.9 to 148.0 mg C/m**2/day (aver. 56.9 mg C/m**2/day). It was shown that frontal zones divided the Kara Sea into distinct areas with different productivities. Maximum levels of primary production were measured in the deep part of the Yamal transect (132.4 mg C/m**2/day) and the shallow Kara Sea shelf near the Ob River estuary (74.9 mg C/m**2/day). Characteristics of these regions were low salinity of the surface water layer (19-25 psu) and elevated silicon concentration (12.8-28.1 µg-atom/l). It is explainable by river runoff. Frontal zones of the Yamal current within the Yamal and Ob transects showed high assimilation numbers reached to 2.32 and 1.49 mg C/mg Chl/hr, respectively; they were maximal for studied areas.
Resumo:
A detailed study of strontium isotope variations in Neogene marine carbonate sediments from Deep Sea Drilling Project Site 590B, using techniques that allow the 87Sr/86Sr ratio to be determined to better than +/-0.00001, gives a high-resolution record of the Sr isotopic evolution of seawater. The data show that the rate of change of the marine 87Sr/86Sr ratio has varied significantly even on time scales as short as 1 m.y. Periods of particularly rapid growth appear to follow major marine regressions and probably reflect an increase in the delivery of radiogenic Sr from the continents coupled with a decreased submarine carbonate dissolution rate (greater carbonate compensation depth). Periods of relatively slowly changing 87Sr/86Sr follow major marine transgressions. On the basis of correlations with the marine oxygen isotope record and the times of major continental glacier growth, it is inferred that the effects of sea-level variations are modified by climatic factors that affect the intensity of continental weathering and runoff. The effects of sea-floor generation rate variations are not discernible for the Neogene. The maximum attainable stratigraphic resolution using Sr isotopes is between 0.1 and 2 m.y. for this time period.
Resumo:
(of book) Problems of origin of the hydrosphere, history of formation and development of underground water, of the World Ocean, lakes, rivers, surface and subsurface ice are under consideration in the book. An attempt of the complete reconstruction of the continental hydrosphere in the Eastern Europe in Late Pleistocene is made. Methods of paleohydrologic studies are described. Some papers are devoted to paleoclimatic problems of river runoff formation and paleotermic evolution of continental glaciers.