27 resultados para potassium fertilizing
Resumo:
A series of K-Ar dates from Mt Giluwe volcano is reported and its relevance to the Quaternary history of the volcano is discussed. The period between about 380 000 and 220 000 years BP seems to have been one of major volcanic activity. During the volcanic activity there were periods of ice cover probably of short duration. The oldest evidence of glacial action predates a lava flow dated at between 340 000 and 380 000 years. At about 290 000 years an ice cap of a thickness of at least 100 m covered the summit area and one or a series of subglacial eruption(s) led to the formation of palagonitic breccia. This event was probably associated with a complete melting of the ice since it was followed almost immediately by the eruption of a thick sequence of normal lava flows which range in age from about 289 000 years to about 220 000 years. Subsequent volcanic activity was less significant and no dates are available on this.
Resumo:
Although various models have been proposed to explain the origin of manganese nodules (see Goldberg and Arrhenius), two major hypotheses have received extensive attention. One concept suggests that manganese nodules form as the result of interaction between submarine volcanic products and sea water. The common association of manganese nodules with volcanic materials constitutes the main evidence for this theory. The second theory involves a direct inorganic precipitation of manganese from sea water. Goldberg and Arrhenius view this process as the oxidation of divalent manganese to tetravalent manganese by oxygen under the catalytic action of particulate iron hydroxides. Manganese accumulation by the Goldberg and Arrhenius theory would be a relatively slow and comparatively steady process, whereas Bonatti and Nayudu believe manganese nodule formation takes place subsequent to the eruption of submarine volcanoes by the acidic leaching of lava.
Resumo:
Ne, Ar, Kr, Xe, and K2O were measured in representative samples of holocrystalline basalt from DSDP Hole 504B. No hiatus in inert gas abundance is recognized at the base of the "oxic" alteration zone and the extent rather than the nature of alteration appears to determine these abundances. When the inert gas abundances are separately plotted against K2O, two distinct trends of loss emerge, one for alteration involving K-gain, the other for K-loss. Apparent whole-rock K-Ar ages are anomalous in the upper 50 m of basement, and below 300 m sub-basement. In the intervening zone of basement, celadonization adds sufficient potassium and eliminates enough "primary" 40Ar early in the history of the basalts for "excess" 40Ar to become subordinate to radiogenic 40Ar in basalts showing potassium enrichment greater than 0.2%. Stratigraphically correct K-Ar ages are obtained, therefore, from K-enriched basalts of the oxic alteration zone.