27 resultados para p11
Resumo:
The dataset is composed of 57 samples from 15 stations. The phytoplankton samples were collected by 5l Niskin bottles attached to the CTD system. The sampling depths were selected according to the CTD profiles and the in situ fluorometer readings. The samples (50 ml sea water) were preserved with prefiltered (0.2 micron) glutardialdehyde solution (1.5 ml of commercial glutardialdehyde (25%)) into dark colored glass bottles. Preserved samples were poured into 10 or 25 ml settling chambers (Hydro-Bios) for cells to settle on the bottom over a day. Species identification and enumeration were done under an inverted microscope (Olympus IX71). At least 400 specimen were tried to be counted in each sample.
Resumo:
The dataset is composed of 34 samples from 23 stations. The phytoplankton samples were collected by 5l Niskin bottles attached to the CTD system. The sampling depths were selected according to the CTD profiles and the in situ fluorometer readings. The samples (50 ml sea water) were preserved with prefiltered (0.2 micron) glutardialdehyde solution (1.5 ml of commercial glutardialdehyde (25%)) into dark colored glass bottles. Preserved samples were poured into 10 or 25 ml settling chambers (Hydro-Bios) for cells to settle on the bottom over a day. Species identification and enumeration were done under an inverted microscope (Olympus IX71). At least 400 specimen were tried to be counted in each sample.
Resumo:
Material cored during the Integrated Ocean Drilling Program (IODP) Expedition 310 'Tahiti Sea Level' revealed that the fossil reef systems around Tahiti are composed of two major stratigraphic sequences: (i) a last deglacial sequence; and (ii) an older Pleistocene sequence. The older Pleistocene carbonate sequence is composed of reef deposits associated with volcaniclastic sediments and was preserved in Hole 310-M0005D drilled off Maraa. Within an approximately 70-m-thick older Pleistocene sequence (33.22-101.93 m below seafloor; 92.85-161.56 m below present sealevel) in this hole, 11 depositional units are defined by lithological changes, sedimentological features, and paleontological characteristics and are numbered sequentially from the top of the hole downward (Subunits P1-P11). Paleowater depths inferred from nongeniculate coralline algae, combined with those determined by using corals and larger foraminifers, suggest two major sealevel rises during the deposition of the older Pleistocene sequence. Of these, the second sealevel rise is associated with an intervening sealevel drop. It is likely that the second sealevel rise corresponds to that during Termination II (TII, the penultimate deglaciation, from Marine Isotope Stages 6 to 5e). Therefore, the intervening sealevel drop can be correlated with that known as the 'sealevel reversal' during TII. Because there are limited data on the Pleistocene reef systems in the tropical South Pacific Ocean, this study provides important information about Pleistocene sealevel history, the evolution of coral reef ecosystems, and the responses of coral reefs to Quaternary climate changes.
Resumo:
The dataset is composed of 46 samples from 9 stations. The phytoplankton samples were collected by 5l Niskin bottles attached to the CTD system. The sampling depths were selected according to the CTD profiles and the in situ fluorometer readings. The samples (50 ml sea water) were preserved with prefiltered (0.2 micron) glutardialdehyde solution (1.5 ml of commercial glutardialdehyde (25%)) into dark colored glass bottles. Preserved samples were poured into 10 or 25 ml settling chambers (Hydro-Bios) for cells to settle on the bottom over a day. Species identification and enumeration were done under an inverted microscope (Olympus IX71). At least 400 specimen were tried to be counted in each sample.
Resumo:
The dataset is composed of 48 samples from 17 stations. The phytoplankton samples were collected by 5l Niskin bottles attached to the CTD system. The sampling depths were selected according to the CTD profiles and the in situ fluorometer readings. The samples (50 ml sea water) were preserved with prefiltered (0.2 micron) glutardialdehyde solution (1.5 ml of commercial glutardialdehyde (25%)) into dark colored glass bottles. Preserved samples were poured into 10 or 25 ml settling chambers (Hydro-Bios) for cells to settle on the bottom over a day. Species identification and enumeration were done under an inverted microscope (Olympus IX71). At least 400 specimen were tried to be counted in each sample.
Resumo:
The dataset is composed of 20 samples from 14 stations. The phytoplankton samples were collected by 5l Niskin bottles attached to the CTD system. The sampling depths were selected according to the CTD profiles and the in situ fluorometer readings. The samples (50 ml sea water) were preserved with prefiltered (0.2 micron) glutardialdehyde solution (1.5 ml of commercial glutardialdehyde (25%)) into dark colored glass bottles. Preserved samples were poured into 10 or 25 ml settling chambers (Hydro-Bios) for cells to settle on the bottom over a day. Species identification and enumeration were done under an inverted microscope (Olympus IX71). At least 400 specimen were tried to be counted in each sample.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.