908 resultados para oxygen isotopes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents high-resolution foraminiferal-based sea surface temperature, sea surface salinity and upper water column stratification reconstructions off Cape Hatteras, a region sensitive to atmospheric and thermohaline circulation changes associated with the Gulf Stream. We focus on the last 10,000 years (10 ka) to study the surface hydrology changes under our current climate conditions and discuss the centennial to millennial time scale variability. We observed opposite evolutions between the conditions off Cape Hatteras and those south of Iceland, known today for the North Atlantic Oscillation pattern. We interpret the temperature and salinity changes in both regions as co-variation of activities of the subtropical and subpolar gyres. Around 8.3 ka and 5.2-3.5 ka, positive salinity anomalies are reconstructed off Cape Hatteras. We demonstrate, for the 5.2-3.5 ka period, that the salinity increase was caused by the cessation of the low salinity surface flow coming from the north. A northward displacement of the Gulf Stream, blocking the southbound low-salinity flow, concomitant to a reduced Meridional Overturning Circulation is the most likely scenario. Finally, wavelet transform analysis revealed a 1000-year period pacing the d18O signal over the early Holocene. This 1000-year frequency band is significantly coherent with the 1000-year frequency band of Total Solar Irradiance (TSI) between 9.5 ka and 7 ka and both signals are in phase over the rest of the studied period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth's climate abruptly warmed by 5-8 °C during the Palaeocene-Eocene thermal maximum (PETM), about 55.5 million years ago**1,2. This warming was associated with a massive addition of carbon to the ocean-atmosphere system, but estimates of the Earth systemresponse to this perturbation are complicated by widely varying estimates of the duration of carbon release, which range from less than a year to tens of thousands of years. In addition the source of the carbon, and whether it was released as a single injection or in several pulses, remains the subject of debate**2-4. Here we present a new high-resolution carbon isotope record from terrestrial deposits in the Bighorn Basin (Wyoming, USA) spanning the PETM, and interpret the record using a carbon-cycle boxmodel of the ocean-atmosphere-biosphere system.Our record shows that the beginning of the PETMis characterized by not one but two distinct carbon release events, separated by a recovery to background values. To reproduce this pattern, our model requires two discrete pulses of carbon released directly to the atmosphere, at average rates exceeding 0.9 Pg C yr**-1, with the first pulse lasting fewer than 2,000 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ~19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (~12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived d18O of seawater (d18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional d18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the d18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biostratigraphic, sedimentologic, and geochemical analyses of hemipelagic periplatform sediments from shallow gravity cores taken during the Ocean Drilling Program Leg 194 site survey reveal that, despite the strong currents and almost infilled intraplatform bathymetric depressions, recent sedimentation at the location of the Leg 194 drill sites recorded glacial-interglacial cycles. Sediment analyses included determination of sediment type, carbonate content, bulk stable oxygen isotope composition, and calcareous nannofossil zones. Glacial periods, identified by elevated bulk d18O, are characterized by darker sediment color, coarser grain size, and lower carbonate content, whereas interglacial periods yield lighter-colored, finer, and carbonate-rich sediments. These data from the shallowmost few meters of Marion Plateau sediments complement the subsurface information of Leg 194 holes, in which the top few meters have not been analyzed in such a high-resolution fashion. In addition, these gravity cores are more likely to have recovered the sediments closest to the sediment/water interface as compared to the hydraulic piston cores collected during Leg 194.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution bio- and chemostratigraphy of an earliest Pliocene section from ODP Site 652 indicates that postflood paleoceanographic conditions in the Tyrrhenian Sea can be sub-divided into two discrete intervals. The first is manifested by an acme of Sphaeroidinellopsis spp., increasing carbonate contents, and a progressive decrease upsection in both the d13C and dl8O values of the planktonic foraminifera. The lower part of the acme interval contains unusual surface-to-bottom water isotope gradients suggesting a stratification of two water masses. Normal gradients in the upper part of the acme interval suggest a well-mixed water body. Between the end of the acme interval and the MP11/MP12 boundary, denoted by the first occurrence (F.O.) of Globorotalia margaritae, a migrational first appearance, there was a catastrophic collapse of the gradient marking an onset of the second post-flood interval. The disintegration of habitable conditions is suggested by a sharp decrease in carbonate content and the disappearance of the benthonic assemblage, which is subsequently replaced predominantly by Uvigerinapygmea, indicative of cold, low-oxygenated bottom waters. The introduction of benthonic species denoting well-oxygenated bottom conditions occurs within the lower MP12 zone. Superimposed on these overall trends are shorter term, warm-cold cycles, which are interpreted as orbitally induced, climatic fluctuations. Correlative studies of the less complete earliest Pliocene sections from ODP Holes 653B and 654A confirm these interpretations. A scenario derived from an integration of all the stratigraphic data indicates that normal paleoceanographic conditions were operating in the Tyrrhenian Sea only approximately 250,000 yr after the cessation of Messinian evaporative conditions at the Miocene/Pliocene boundary. The post-flood interval is marked by an initial period of gradual infilling, the Sphaeroidinellopsis spp. acme interval, followed by a disintegration of oceanographic conditions and a second recovery period. A sudden influx of cold, deep Atlantic waters into the Tyrrhenian Sea, resulting from a major tectonic break in the Gibraltar sill, may have caused this catastrophic reversal in the orderly recovery of normal paleoceanographic conditions in the post-flood period.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable oxygen analyses and snow accumulation rates from snow pits sampled in the McMurdo Dry Valleys have been used to reconstruct variations in summer temperature and moisture availability over the last four decades. The temperature data show a common interannual variability, with strong regional warmings occurring especially in 1984/85, 1995/96 and 1990/91 and profound coolings during 1977/78, 1983/84, 1988/89, 1993/94, and 1996/97. Annual snow accumulation shows a larger variance between sites, but the early 1970s, 1984, 1997, and to a lesser degree 1990/91 are characterized overall by wetter conditions, while the early and late 1980s show low snow accumulation values. Comparison of the reconstructed and measured summer temperatures with the Southern Oscillation Index (SOI) and the Antarctic Oscillation (AAO) yield statistically significant correlations, which improve when phase-relationships are considered. A distinct change in the phase relationship of the correlation is observed, with the SOI-AAO leading over the temperature records by one year before, and lagging by one year after 1988. These results suggest that over the last two decades summer temperatures are influenced by opposing El Niño Southern Oscillation and AAO forcings and support previous studies that identified a change in the Tropical-Antarctic teleconnection between the 1980s and 1990s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the validity of d18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM). A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM) values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST), and orbital parameters) were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (d18Oprecip) in response to individual climate factors. The change in topography (due to the change in land ice cover) played a significant role in reducing the surface temperature and d18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and d18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3). Large reductions in d18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the d18Oprecip distribution among the simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Explanations for the demise of the Classic Maya civilization on the Yucatán Peninsula during the Terminal Classic Period (TCP; CE 750-1050) are controversial. Multiyear droughts are one likely cause, but the role of the Caribbean Sea, the dominant moisture source for Mesoamerica, remains largely unknown. Here we present bimonthly resolved snapshots of reconstructed sea surface temperature (SST) and salinity (SSS) variability in the southern Caribbean from precisely dated fossil corals. Our fossil coral results from Bonaire indicate strong interannual to decadal SST and SSS variability in the southern Caribbean Sea during the TCP with multiyear extremes of high SSS and high SST that coincide with droughts on the Yucatán Peninsula. The results are best explained by changed Caribbean SST gradients affecting the Caribbean low-level atmospheric jet with consequences for Mesoamerican precipitation, possibly linked to changes in Atlantic Meridional Overturning Circulation strength. Our findings provide a new perspective on the anomalous hydrological changes on the Yucatán Peninsula during the TCP that complement the often-suggested southward displacement of the Intertropical Convergence Zone. We advocate for a strong role of ocean-atmosphere interactions in the Caribbean Sea related to the multiyear variations in Caribbean Sea surface conditions as an important driver of the spatially complex pattern of hydrological anomalies during the TCP.