38 resultados para octahedral polyoxomolybdate
Resumo:
The mineralogy and stable (O and C) and Sr isotopic compositions of low-temperature alteration phases were determined in Hole 735B gabbroic rocks in order to understand the processes of low-temperature alteration in this uplifted block of lower oceanic crust. Phyllosilicates include smectite (saponite, Mg montmorillonite, and nontronite), chlorite/smectite, chlorite, talc, and serpentine. Other phases include prehnite, albite, K-feldspar, analcite, natrolite, thompsonite, pyrite, and titanite. The low-grade mineral assemblages mainly represent zeolite facies and lower-temperature "seafloor weathering" processes. Phyllosilicates formed over a range of temperatures but may also reflect variable reaction progress. Alteration temperatures were probably somewhat greater below 1300 meters below seafloor. Mineralogy and isotopic data indicate that conditions were mostly reducing and that seawater solutions were rock dominated. Carbonates formed late from cold and generally oxidizing seawater solution, however, as seawater penetrated downward as the result of fracturing and faulting in the uppermost portion of the uplifted crustal block.
Resumo:
Clay minerals are examined in detail in the sediment from the Tonga Trench margin at Site 841 (Leg 135 ODP). The changes in amount and nature of secondary clays with depth provide an alternative explanation for the intensive alteration of volcanogenic material at convergent margins. A characteristic distribution of clay minerals with depth shows four distinct zones unexplainable by simple burial diagenesis processes. These are named the upper, reactive, lower and rhyolitic zones. The reactive zone is intercalated with numerous sills and is characterized by the dominant iron-rich clays such as saponite, corrensite and chlorite associated with analcime. The occurrence of such iron-rich clays, mostly associated with a large amount of analcime, yields chemical and mineralogical evidence for thermal diagenesis. The required heat for the diagenetic process was transferred from recently intruded basaltic andesite sills. In the vicinity of these intrusions, the iron-rich clay minerals may have formed at temperatures up to 200°C. A zoning with respect to clay and zeolite minerals indicates that the influence of the palaeoheat flow decreased with the distance from the intrusion. The formation of interlayered I/S, illite, kaolinite and aluminous chlorite, which are recognized as major secondary minerals within the rhyolitic complex, was mainly controlled by both early diagenesis at moderately elevated temperatures, and since the Eocene by burial diagenesis at low temperatures. The occurrence of a steam zone in an early stage of the intrusion is restricted to Miocene tuffs and has overprinted the early alteration of the volcanogenic material within the tuffs and has changed the originally pristine composition of the pore fluids.
Resumo:
Mineralogical and geochemical analyses of alteration products from upper and lower volcanic series recovered during ODP Leg 104 reveal variations both in composition and order of crystallization of clay minerals vesicles and voids filling and replacing glass. These results provide information about successive alteration stages of rocks and interlayered volcaniclastic sediments. The first stage, related to initial basalt-seawater interaction, is characterized by development of Fe-smectites, especially Fe-rich saponite. A second stage of intermittently superimposed subaerial weathering is marked by iron-oxides-halloysite-kaolinite formation. The third episode, interpreted as hydrothermal on the basis of O-isotopic data, is defined by postburial coprecipitation of Fe-poor, Mg-rich saponite and celadonite. A distinct final and pervasive hydrothermal stage, occurring mainly in the lower series and dominated by Al-smectites-zeolites assemblage, indicates changes toward a more reducing alteration environment.
Resumo:
We detail the petrography and mineralogy of 145 basaltic rocks from the top, middle, and base of flow units identified on shipboard along with associated pyroclastic samples. Our account includes representative electron microprobe analyses of primary and secondary minerals; 28 whole-rock major-oxide analyses; 135 whole-rock analyses each for 21 trace elements; 7 whole-rock rare-earth analyses; and 77 whole-rock X-ray-diffraction analyses. These data show generally similar petrography, mineralogy, and chemistry for the basalts from all four sites; they are typically subalkaline and consanguineous with limited evolution along the tholeiite trend. Limited fractionation is indicated by immobile trace elements; some xenocrystic incorporation from more basic material also occurred. Secondary alteration products indicate early subaerial weathering followed by prolonged interaction with seawater, most likely below 150°C at Holes 552, 553A, and 554A. At Hole 555, greenschist alteration affected the deepest rocks (olivine-dolerite) penetrated, at 250-300°C.
Resumo:
The Lower Cretaceous and Miocene sequences of the NW African passive continental margin consist of siliciclastic, volcaniclastic and hybrid sediments. These sediments contain a variety of diagenetic carbonates associated with zeolites, smectite clays and pyrite, reflecting the detrital mineralogical composition and conditions which prevailed during opening of the North Atlantic. In the Lower Cretaceous siliciclastic sediments, siderite (-6 per mil to +0.7per mil d18O PDB, -19.6 per mil to +0.6 per mil d13C PDB) was precipitated as thin layers and nodules from modified marine porewaters with input of dissolved carbon from the alteration of organic matter. Microcrystalline dolomite layers, lenses, nodules and disseminated crystals (-3.0 per mil to +2.5 per mil d18O PDB, -7.2 per mil to +4.9 per mil d13C PDB) predominate in slump and debris-flow deposits within the Lower Miocene sequence. During the opening of the Atlantic, volcanic activity in the Canary Islands area resulted in input of volcaniclastic sediments to the Middle and Upper Miocene sequences. Calcite is the dominant diagenetic carbonate in the siliciclastic-bioclastic-volcaniclastic hybrid and in the volcaniclastic sediments, which commonly contain pore-rimming smectite. Diagenetic calcite (-22 per mil to +1.6 per mil d18O PDB, -35.7 per mil to +0.8 per mil d13C PDB) was precipitated due to the interaction of volcaniclastic and bioclastic grains with marine porewaters. Phillipsite is confined to the alteration of volcaniclastic sediments, whereas clinoptilolite is widely disseminated, occurring essentially within foraminiferal chambers, and formed due to the dissolution of biogenic silica.
Resumo:
The interaction of seawater with basalts in DSDP Hole 501 and the upper part of Hole 504B (Costa Rica Rift) produced oxidative alteration and a zonation of clay minerals along cracks. From rock edges to interiors in many cracks the following succession occurs, based on microscopic observations and microprobe analysis: iron hydroxides (red), "protoceladonite" (green), iddingsite (orange), and saponite (yellow). Clay minerals replace olivines and fill vesicles and cracks. Other secondary minerals are phillipsite, aragonite, and unidentified carbonates. Some glass is transformed to Mg-rich palagonite. Bulk rock chemistry is related to the composition of the secondary minerals. The zonation can be interpreted as a succession of postburial nonoxidative and oxidative diagenesis similar to that described in the Leg 34 basalts.
Resumo:
The purpose of this study is to clarify the sedimentary history and chemical characteristics of clay minerals found in sediments deposited in the distal part of the Bengal Fan since the Himalayas were uplifted 17 m.y. ago. A total of seventy-eight samples were collected from three drilled cores which were to be used for the clay mineral analyses by means of XRD and ATEM. The results obtained from the analyses show that individual clay mineral species in the sediment samples at each site have similar features when the samples are of the same age, whereas these species have different features in samples of differing geological ages. Detrital clay minerals such as illite and chlorite were deposited in greater amounts than kaolinite and smectite during the Early to Middle Miocene. This means that the Himalayan uplift was vigorous at least until the Middle Miocene. In the Pliocene chemical weathering was more prevalent so that instead, in the distal part of the Bengal Fan, kaolinite shows the highest concentrations. This would accord with weaker uplift in the Himalayas. In the Pleistocene period, vigorous Himalayan uplift is characterized by illite-rich sediment in place of kaolinite. In the Holocene, smectite shows the highest concentration in place of the illite and kaolinite which were the predominant clay minerals of the earlier periods. Increasing smectite concentration suggests the Himalayan uplift to have been stable after the Pleistocene period. The smectite analyzed here is found to be dioctahedral Fe-beidellite, and it originated largely from the augite-basalt on the Indian Deccan Traps. The tri-octahedral chlorite is subdivided into three sub-species, an Fe-type, a Mg-type and an intermediate type. The mica clay mineral can be identified as di-octahedral illite which is rich in potassium. The chemical composition and morphology of each clay mineral appears to exhibit no change with burial depth in the sedimentary columns. This implies that there was no systematic transformation of clay minerals with time.
Resumo:
We present results of a detailed mineralogical and geochemical study of the progressive hydrothermal alteration of clastic sediments recovered at ODP Site 858 in an area of active hydrothermal venting at the sedimented, axial rift valley of Middle Valley (northern Juan de Fuca Ridge). These results allow a characterization of newly formed phyllosilicates and provide constraints on the mechanisms of clay formation and controls of mineral reactions on the chemical and isotopic composition of hydrothermal fluids. Hydrothermal alteration at Site 858 is characterized by a progressive change in phyllosilicate assemblages with depth. In the immediate vent area, at Hole 858B, detrital layers are intercalated with pure hydrothermal precipitates at the top of the section, with a predominance of hydrothermal phases at depth. Sequentially downhole in Hole 858B, the clay fraction of the pure hydrothermal layers changes from smectite to corrensite to swelling chlorite and finally to chlorite. In three pure hydrothermal layers in the deepest part of Hole 858B, the clay minerals coexist with neoformed quartz. Neoformed and detrital components are clearly distinguished on the basis of morphology, as seen by SEM and TEM, and by their chemical and stable isotope compositions. Corrensite is characterized by a 24 Å stacking sequence and high Si- and Mg-contents, with Fe/(Fe+Mg) ratio of = 0.08. We propose that corrensite is a unique, possibly metastable, mineralogical phase and was precipitated directly from seawater-dominated hydrothermal fluids. Hydrothermal chlorite in Hole 858B has a stacking sequence of 14 Å with Fe/(Fe+Mg) ratios of ? 0.35. The chemistry and structure of swelling chlorite suggest that it is a corrensiteychlorite mixed-layer phase. The mineralogical zonation in Hole 858B is accompanied by a systematic decrease in d18O, reflecting both the high thermal gradients that prevail at Site 858 and extensive sediment-fluid interaction. Precipitation of the Mg-phyllosilicates in the vent region directly controls the chemical and isotopic compositions of the pore fluids. This is particularly evident by decreases in Mg and enrichments in deuterium and salinity in the pore fluids at depths at which corrensite and chlorite are formed. Structural formulae calculated from TEM-EDX analyses were used to construct clay-H2O oxygen isotope fractionation curves based on oxygen bond models. Our results suggest isotopic disequilibrium conditions for corrensite-quartz and swelling chlorite-quartz precipitation, but yield an equilibrium temperature of 300° C ± 30° for chlorite-quartz at 32 m below the surface. This estimate is consistent with independent estimates and indicates steep thermal gradients of 10-11°/m in the vent region.
Resumo:
The hydrothermal mounds on the southern flank of the Galapagos Spreading Center are characterized by the following main features: 1) They are located over a young basement (0.5 to 0.85 m.y. of age) in a region known for its high sedimentation rate (about 5 cm/10**3 y.) because it is part of the equatorial high biological productivity zone. 2) They are located in a region with generally high heat flow (8 to 10 HFU). The highest heat-flow measurements (up to 10**3 HFU) correspond to mound peaks (Williams et al., 1979), where temperatures up to 15°C were measured during a dive of the submersible Alvin (Corliss et al., 1978). 3) They are often located on small vertical faults which displace the basement by a few meters (Lonsdale, 1977) and affect the 25- to 50-meter-thick sediment cover. Most of these characteristics have also been observed in the other three known cases of hydrothermal deposits with mineral parageneses similar to that of the Galapagos mounds. However, the case of the hydrothermal mounds south of the Galapagos Spreading Center is unique because of the unusual thickness of the hydrothermal deposits present. The mounds are composed of several, up to 4.5-meter-thick, layers of green clays which, in one case (Hole 509B), are overlain by about 1.4 meters of Mn-oxide crust. We suspect that such a large accumulation of hydrothermal products results from the "funnelling" of the hydrothermal solutions exiting from a highly permeable basement along the faults. This chapter reports a preliminary study of those green clays collected by hydraulic piston coring of the Galapagos mounds during Deep Sea Drilling Project (DSDP) Leg 70 of the D/V Glomar Challenger. Green clays have also been reported from three presently or recently active hydrothermal areas in or close to spreading centers.