19 resultados para multi-channel processing
Resumo:
Substantial retreat or disintegration of numerous ice shelves have been observed on the Antarctic Peninsula. The ice shelf in the Prince Gustav Channel retreated gradually since the late 1980's and broke-up in 1995. Tributary glaciers reacted with speed-up, surface lowering and increased ice discharge, consequently contributing to sea level rise. We present a detailed long-term study (1993-2014) on the dynamic response of Sjögren Inlet glaciers to the disintegration of Prince Gustav Ice Shelf. We analyzed various remote sensing datasets to observe the reactions of the glaciers to the loss of the buttressing ice shelf. A strong increase in ice surface velocities was observed with maximum flow speeds reaching 2.82±0.48 m/d in 2007 and 1.50±0.32 m/d in 2004 at Sjögren and Boydell glaciers respectively. Subsequently, the flow velocities decelerated, however in late 2014, we still measured about two times the values of our first measurements in 1996. The tributary glaciers retreated 61.7±3.1 km² behind the former grounding line of the ice shelf. In regions below 1000 m a.s.l., a mean surface lowering of -68±10 m (-3.1 m/a) was observed in the period 1993-2014. The lowering rate decreased to -2.2 m/a in recent years. Based on the surface lowering rates, geodetic mass balances of the glaciers were derived for different time steps. High mass loss rate of -1.21±0.36 Gt/a was found in the earliest period (1993-2001). Due to the dynamic adjustments of the glaciers to the new boundary conditions the ice mass loss reduced to -0.59±0.11 Gt/a in the period 2012-2014, resulting in an average mass loss rate of -0.89±0.16 Gt/a (1993-2014). Including the retreat of the ice front and grounding line, a total mass change of -38.5±7.7 Gt and a contribution to sea level rise of 0.061±0.013 mm were computed. Analysis of the ice flux revealed that available bedrock elevation estimates at Sjögren Inlet are too shallow and are the major uncertainty in ice flux computations. This temporally dense time series analysis of Sjögren Inlet glaciers shows that the adjustments of tributary glaciers to ice shelf disintegration are still going on and provides detailed information of the changes in glacier dynamics.
Resumo:
This data set includes measurements from moored instruments from the Faroe Bank Channel overflow region in the period between 28 May 2012 and 5 June 2013. The data set was collected under the project entitled "Faroe Bank Channel Overflow: Dynamics and Mixing Research", with an objective to describe the structure and variability of the dense oceanic overflow plume from the Faroe Bank Channel on daily to seasonal timescales. Mooring arrays were deployed in two sections: located 25 km downstream of the main sill, in the channel that geographically confines the overflow plume at both edges (section C), and 60 km further downstream, over the slope (section S). The measurements delivered with this data set include hourly-averaged data gridded on 5-m vertical separation, after accounting for mooring knock downs using a mooring dynamics model. Complete set of mooring drawings and detailed description can be found in the cruise report (Fer et al. 2016, PDF provided). The article by Ullgren et al. (2016) gives further details on processing of the data set and presents the data set.
Resumo:
The Eastern Mediterranean Transient (EMT) occurred in the Aegean Sea from 1988 to 1995 and is the most significant intermediate-to-deep Mediterranean overturning perturbation reported by instrumental records. The EMT was likely caused by accumulation of high salinity waters in the Levantine and enhanced heat loss in the Aegean Sea, coupled with surface water freshening in the Sicily Channel. It is still unknown whether similar transients occurred in the past and, if so, what their forcing processes were. In this study, sediments from the Sicily Channel document surface water freshening (SCFR) at 1910±12, 1812±18, 1725±25 and 1580±30 CE. A regional ocean hindcast links SCFR to enhanced deep-water production and in turn to strengthened Mediterranean thermohaline circulation. Independent evidence collected in the Aegean Sea supports this reconstruction, showing that enhanced bottom water ventilation in the Eastern Mediterranean was associated with each SCFR event. Comparison between the records and multi-decadal atmospheric circulation patterns and climatic external forcings indicates that Mediterranean circulation destabilisation occurs during positive North Atlantic Oscillation (NAO) and negative Atlantic Multidecadal Oscillation (AMO) phases, reduced solar activity and strong tropical volcanic eruptions. They may have recurrently produced favourable deep-water formation conditions, both increasing salinity and reducing temperature on multi-decadal time scales.