65 resultados para modelling, phytoplankton


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general study of biogeochemical processes (DYNAPROC cruise) was conducted in May 1995 at a time-series station in the open northwestern Mediterranean Sea where horizontal advection was weak. Short-term variations of the vertical distributions of pico- and nanophytoplankton were investigated over four 36-h cycles, along with parallel determinations of metabolic CO2 production rates and amino acid-containing colloid (AACC) concentrations at the chlorophyll maximum depth. The vertical (0-1000-m depth) distributions of (i) AACC, (ii) suspended particles and (iii) metabolic CO2 production rate were documented during the initial and final stages of these 36-h cycles. This study was concerned with diel vertical migration (DVM) of zooplankton, which provided periodic perturbations. Accordingly, the time scale of the experimental work varied from a few hours to a few days. Although all distributions exhibited a periodic behaviour, AACC distributions were generally not linked to diel vertical migrations. In the subsurface layer, Synechococcus made the most abundant population and large variations in concentration were observed both at day and at night. The corresponding integrated (over the upper 90 m) losses of Synechococcus during one night pointed to a potential source of exported organic matter amounting to 534 mg C/m**2. This study stresses the potential importance of organic matter export from the euphotic zone through the daily grazing activity of vertically migrating organisms, which would not be accounted for by measurements at longer time scales. The metabolic CO2 production exhibited a peak of activity below 500 m that was shifted downward, apparently in a recurrent way and independently of the vertical distributions of AACC or of suspended particulate material. To account for this phenomenon, a 'sustained wave train» hypothesis is proposed that combines the effect of the diel superficial faecal pellet production by swarming migrators and the repackaging activity of the nonmigrating midwater populations. Our results confirm the recent finding that the particulate compartment is not the major source of the observed instantaneous remineralisation rate and shed a new light on the fate of organic matter in the aphotic zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SES_GR2_Copepod Ingestion on ciliates and phytoplankton dataset is based on samples taken during August-September 2008 in Ionian Sea, Libyan Sea, Southern Aegean Sea and Northern Aegean Sea. Ingestion rates were estimated from experiments performed at all the third priority stations during the cruise according to DoW of Sesame project. Copepods for the experiments were obtained with slow non-quantitative tows from the upper 100 m layer of the water column using 200 µm mesh size nets fitted with a large non-filtering cod end. For the grazing experiments we used the following copepod species: Clausocalanus furcatus, Oithona spp. Temora stylifera and Acartia spp according to the relevant reference (Bamstedt et al. 2000). Copepod clearance rates on ciliates were calculated according to Frost equations (Frost 1972). Ingestion rates were calculated by multiplying clearance rates by the initial standing stocks (Bamstedt et al. 2000).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dataset is composed of 57 samples from 15 stations. The phytoplankton samples were collected by 5l Niskin bottles attached to the CTD system. The sampling depths were selected according to the CTD profiles and the in situ fluorometer readings. The samples (50 ml sea water) were preserved with prefiltered (0.2 micron) glutardialdehyde solution (1.5 ml of commercial glutardialdehyde (25%)) into dark colored glass bottles. Preserved samples were poured into 10 or 25 ml settling chambers (Hydro-Bios) for cells to settle on the bottom over a day. Species identification and enumeration were done under an inverted microscope (Olympus IX71). At least 400 specimen were tried to be counted in each sample.