105 resultados para metamorphism
Resumo:
Drilling penetrated pre-Mesozoic crystalline basement beneath abbreviated sedimentary sequences overlying fault blocks in the southeastern Gulf of Mexico. At Hole 538A, located on Catoche Knoll, a foliated, regional metamorphic association of variably mylonitic felsic gneisses and interlayered amphibolite is intruded by post-tectonic diabase dikes. Hornblende from the amphibolite displays internally discordant 40Ar/39Ar age spectra, suggesting initial post-metamorphic cooling at about 500 Ma followed by a mild thermal disturbance at about 200 Ma. Biotite from the gneiss yields a plateau age of 348 Ma, which is interpreted to result from incorporation of extraneous argon components when the biotite system was opened during the about 200 Ma thermal overprint. A whole-rich diabase sample from Hole 538A records a crystallization age of 190.4 ± 3.4 Ma. A lower grade phyllitic metasedimentary sequence was penetrated at Hole 537, drilled about 30 km northwest of Catoche Knoll. Whole-rock phyllite samples display internally discordant 40Ar/39Ar age spectra, but plateau segments clearly document an early Paleozoic metamorphism at about 500 Ma. The age and lithologic character of the basement terrane penetrated at Holes 537 and 538A suggest that the drilled fault blocks are underlain by attenuated fragments of continental crust of "Pan-African" affinity. This supports pre-Mesozoic tectonic reconstructions that locate Yucatan in the present Gulf recess during the amalgamation of Pangea.
Resumo:
Hypersthene-garnet-sillimanite-quartz enclaves were studied in orthopyroxene-plagioclase and orthopyroxene-clinopyroxene crystalline schists and gneisses from shear zones exposed in the Palenyi Island within the Early Proterozoic Belomorian Mobile Belt. Qualitative analysis of mineral assemblages indicates that these rocks were metamorphosed to the granulite facies (approximately 900°C and 10-11 kbar). Oxygen isotopic composition was determined in rock-forming minerals composing zones of the enclaves of various mineral and chemical composition. Closure temperatures of the isotopic systems obtained by methods of oxygen isotopic thermometry are close to values obtained with mineralogical geothermometers (garnet-orthopyroxene and garnet-biotite) and correspond to the high-temperature granulite facies (860-900°C). Identified systematic variations in d18O values were determined in the same minerals from zones of different mineral composition. Inasmuch as these zones are practically in contact with one another, these variations in d18O cannot be explained by primary isotopic heterogeneity of the protolith. Model calculations of the extent and trend of d18O variations in minerals suggest that fluid-rock interaction at various integral fluid/rock ratios in discrete zones was the only mechanism that could generate the zoning. This demonstrates that focused fluid flux could occur in lower crustal shear zones. Preservation of high-temperature isotopic equilibria of minerals testifies that the episode of fluid activity at the peak of metamorphism was very brief.
Resumo:
The Athabasca Basin (Canada) contains the highest grade unconformity-type uranium deposits in the world. Underlying the Athabasca Group sedimentary rocks of the Dufferin Lake zone are variably graphitic pelitic schists (VGPS), altered to chlorite and hematite (Red/Green Zone: RGZ), and locally bleached near the unconformity during paleoweathering and/or later fluid interaction, leading to a loss of graphite near the unconformity. Fluid inclusions were examined in different generations of quartz veins, using microthermometry and Raman analysis, to characterize and compare the different fluids that interacted with the RGZ and the VGPS. In the VGPS, CH4-, N2- and CO2-rich fluids circulated. CH4- and N2-rich fluids could be the result of the breakdown of graphite to CH4/CO2, whereas N2-rich fluid is interpreted to be the result of breakdown of feldspars/micas to NH4+/N2. In the RGZ, highly saline fluids interpreted to be basinally derived have been recorded. The circulation of the two types of fluids (carbonic and brines) occurred at two different distinct events: 1) during the retrograde metamorphism of the basement rocks before the deposition of the Athabasca Basin for the carbonic fluids, and 2) after the deposition of the Athabasca Basin for the brines. Thus, in addition to possibly be related to graphite depletion in the RGZ, the brines can be linked to uranium mineralization.
Resumo:
Sulfide mineralogy, sulfur contents, and sulfur isotopic compositions were determined for samples from the 500-m gabbroic section of Ocean Drilling Program Hole 735B in the southwest Indian Ocean. Igneous sulfides (pyrrhotite, chalcopyrite, pentlandite, and troilite) formed by accumulation of immiscible sulfide droplets and crystallization from intercumulus liquids. Primary sulfur contents average around 600 ppm, with a mean sulfide d34S value near 0 per mil, similar to the isotopic composition of sulfur in mid-ocean ridge basalt glass. Rocks from a 48-m interval of oxide gabbros have much higher sulfur contents (1090-2530 ppm S) due to the increased solubility of sulfur in Fe-rich melts. Rocks that were locally affected by early dynamothermal metamorphism (e.g., the upper 40 m of the core) have lost sulfur, averaging only 90 ppm S. Samples from the upper 200 m of the core, which underwent subsequent hydrothermal alteration, also lost sulfur and contain an average of 300 ppm S. Monosulfide minerals in some of the latter have elevated d34S values (up to +6.9 per mil), suggesting local incorporation of seawater-derived sulfur. Secondary sulfides (pyrrhotite, chalcopyrite, pentlandite, troilite, and pyrite) are ubiquitous in trace amounts throughout the core, particularly in altered olivine and in green amphibole. Pyrite also locally replaces igneous pyrrhotite. Rocks containing secondary pyrite associated with late low-temperature smectitic alteration have low d34S values for pyrite sulfur (to - 16.6 per mil). These low values are attributed to isotopic fractionation produced during partial oxidation of igneous sulfides by cold seawater. The rocks contain small amounts of soluble sulfate (6% of total S), which is composed of variable proportions of seawater sulfate and oxidized igneous sulfur. The ultimate effect of secondary processes on layer 3 gabbros is a loss of sulfur to hydrothermal fluids, with little or no net change in d34S.
Resumo:
A comprehensive (mineralogical, geochronological, and geochemical) study of zircons from an eclogitized gabbronorite dike was carried out in order to identify reliable indicators (mineralogical and geochronological) of genesis of the zircons in their various populations and, correspondingly, ages of certain geological events (magmatic crystallization of the gabbroids, their eclogitization, and overprinted retrograde metamorphism). Three populations of zircons separated from two rock samples comprised xenogenic, magmatic (gabbroic), and metamorphic zircons, with the latter found exclusively in the sample of retrograded eclogitized gabbroids. Group I zircons are xenogenic and have a Meso- to Neoarchean age. Mineral inclusions in them (quartz, apatite, biotite, and chlorite) are atypical of gabbroids, and geochemistry of these zircons is very diverse. Group II zircons contain mineral inclusions of ortho- and clinopyroxene and are distinguished for their very high U, Th, Pb, and REE concentrations and Th/U ratios. These zircons formed during the late magmatic crystallization of the gabbroids at temperatures of 1150-1160°C, and their U-Pb age 2389±25 Ma corresponds to this process. Eclogite mineral assemblages crystallized shortly after the magmatic process, as follows from the fact that marginal portions of prismatic zircons contain clinopyroxene inclusions with elevated contents of the jadeite end-member. Group III zircons contain rare amphibole and biotite inclusions and have low Ti, Y, and REE concentrations, low Th/U ratios, high Hf concentrations, contain more HREE than LREE, and have U-Pb age 1911±9.5 Ma, which corresponds to age of overprinted amphibolite-facies metamorphism.
Resumo:
Metamorphic rocks of the Khavyven Highland in eastern Kamchatka were determined to comprise two complexes of metavolcanic rocks that have different ages and are associated with subordinate amounts of metasediments. The complex composing the lower part of the visible vertical section of the highland is dominated by leucocratic amphibole-mica (+/-garnet) and epidote-mica (+/-garnet) crystalline schists, whose protoliths were andesites and dacites and their high-K varieties of island-arc calc-alkaline series. The other complex composing the upper part of the vertical section consists of spilitized basaltoids transformed into epidote-amphibole and phengite-epidote-amphibole green schists, which form (together with quartzites, serpentinized peridotites, serpentinites, and gabbroids) a sea-margin ophiolitic association. High LILE concentrations, high K/La, Ba/Th, Th/Ta, and La/Nb ratios, deep Ta-Nb minima, and low (La/Yb)_N and high 87Sr/86Sr ratios of the crystalline schists of the lower unit are demonstrated to testify to their subduction nature and suggest that their protolithic volcanics were produced in the suprasubduction environment of the Ozernoi-Valaginskii (Achaivayam-Valaginskii) island volcanic arc of Campanian-Paleogene age. The green schists of the upper unit show features of depleted MOR tholeiitic melts and subduction melts, which cause the deep Ta-Nb minima, and low K/La and 87Sr/86Sr ratios suggesting that the green schists formed in a marginal basin in front of the Ozernoi-Valaginskaya island arc. Recently obtained K-Ar ages in the Khavyven Highland vary from 32.4 to 39.3 Ma and indicate that metamorphism of the protolithic rocks occurred in Eocene under effect of collision and accretion processes of the arc complexes of the Ozernoi-Valaginskii and Kronotskii island arcs with the Asian continent and the closure of forearc oceanic basins in front of them. The modern position of the collision suture that marks the fossil subduction zone of the Ozernoi-Valaginskii arc and is spatially restricted to the buried Khavyven uplift in the Central Kamchatka Depression characterized by well-pronounced linear gravity anomalies.
Resumo:
This paper reports results of an investigation of a representative collection of samples recovered by deep-sea drilling from the oceanic basement 10 miles west of the rift valley axis in the crest zone of the Mid- Atlantic Ridge at 15°44'N (Sites 1275B and 1275D). Drilling operations were carried out during Leg 209 of the Drilling Vessel JOIDES Resolution within the framework of the Ocean Drilling Program (ODP). The oceanic crust was penetrated to depth of 108.7 m at Site 1275B and 209 m at Site 1275D. We reconstructed the following sequence of magmatic and metamorphic events resulting in the formation of a typical oceanic core complex of slow-spreading ridges: (1) formation of strongly fractionated (enriched in iron and titanium) tholeiitic magmatic melt parental to gabbroids under investigation in a large magma chamber located in a shallow mantle and operating for a long time under steady-state conditions; (2) transfer of the parental magmatic melt of the gabbroids to the base of the oceanic crust, its interaction with host mantle peridotites, and formation of troctolites and plagioclase peridotites; (3) intrusion of enriched trondhjemite melts as veins and dikes in the early formed plutonic complex, contact recrystallization of the gabbro, and development in the peridotite-gabbro complex of enriched geochemical signatures owing to influence of trondhjemite injections; (4) emplacement of dolerite dikes (transformed to diabases); (5) metamorphism of upper epidoteamphibolite facies with participation of marine fluids; and (6) rapid exhumation of the plutonic complex to the seafloor accompanied by greenschist-facies metamorphism. Distribution patterns of Sr and Nd isotopes and strongly incompatible elements in the rocks suggest contributions from two melt sources to the magmatic evolution of the MAR crest at 15°44'N: a depleted reservoir responsible for formation of the gabbros and diabases and an enriched reservoir, from which trondhjemites (granophyres) were derived.
Resumo:
We present the initial results of a U-Th-Pb zircon ion-microprobe investigation on samples from the Central Belt of Taimyr, in order to constrain its tectono-magmatic evolution. The zircon samples are from a deformed twomica granite (Faddey Massif), deformed metamorphosed gabbroic dike entrained as pods and lenses within metamorphosed tholeiitic basalts of the Kunar-Mod volcanic suite (Klyaz'ma River region), a metamorphosed rhyolite of the same volcanic suite overlying the basic metavolcanic rocks, as well as an undeformed dolerite dike which intrudes the metamorphosed Kunar-Mod basic volcanic rocks. Preliminary results on zircons from the two-mica granite suggest a crystallization age of ~630 Ma for this rock, with inheritance from assimilated crust 840 Ma to 1.1 Ga in age. In the Klyaz'ma River region, zircons from the meta-rhyolite yield a concordant age of -630 Ma. Zircons from the entrained metagabbroic dikes have so far yielded an age of -615 Ma (1 grain), as well as Archean ages (5 grains, concordant at 2.6-2.8 Ga). It seems likely that the Archean grains represent assimilation of older crustal material. Zircons from the post-tectonic dolerite dike have a bimodal age distribution. A well-defined younger age of 281 ±9 Ma is interpreted to represent the crystallization age of the dike, while older, concordant ages of 2.6-2.9 Ga likely represent assimilation of Archean crust (Siberian craton at depth). Several important conclusions can be drawn from the data. (1) The mafic and felsic lithologies of the Kunar-Mod volcanic suite are genetically related and should be the same age. Ages of-630 Ma (meta-rhyolite) and -615 Ma (metagabbroic dikes representing the latest stage of mafic magmatism associated the Kunar-Mod suite) suggest that these lithologies may be the same age, but more data are required to confirm this hypothesis. (2) The 630 Ma two-mica granite is similar in age to the time of high-grade metamorphism, suggesting that syntectonic granite emplacement accompanied obduction of the accretionary Central Belt to the Siberian craton. (3) An Early Permian age is well defined for the undeformed dolerite dike. Dolerite dikes occur across the whole of Taimyr, but are deformed to the south. If related, this single magmatic event pre-dates Permo-Triassic Siberian trap magmatism. Furthermore, it suggests that deformation was localized to southeastern Taimyr.
Resumo:
Analyses of sediments from Leg 64 sites reveal a diverse and in one case unique geochemistry. Sites are characterized by high heat flow along an active, divergent plate boundary, or rapid accumulation of diatom muds, or both. The geochemical trends of Sites 474-476 at the tip of Baja California reflect changes4n the percentages of sedimentary components - particularly biogenous matter and mineralogy - that support interpretations of sedimentary environments inferred to be present since the commencement of subsidence along this young, passive continental margin. The sediments below dolerite sills in Holes 477, 477A, 478, and 481 show major mineralogic and chemical deviations from "average" hemipelagic sediments. The sills appear to have two functions: (1) they allow hydrothermal circulation and metamorphism in a partially closed system by trapping heat and fluids emanating from below, and (2) they expel heated interstitial fluids at the moment of intrusion and mobilize elements, most likely leading to the formation of metalliferous deposits along the surface traces of normal faults in the basin. The hydrothermal system as a whole appears to be localized and ephemeral, as is indicated by the lack of similar geochemical trends and high heat flow at Sites 478 and 481. Site 479 illustrates sedimentation in an oxygen-minimum zone with anoxic sediments and concomitant geochemical trends, especially for MnO. With few exceptions, geochemical trends are remarkably constant with depth, suggesting that Site 479 can serve as an "internal" standard or average sediment against which the magnitude of hydrothermal alteration at the basinal Sites 477, 478, and 481 can be measured.
Resumo:
The geological map shows the northeastern part of the polyphase deformed Sivorg Terrane in the Heimefrontfjella/Dronning Maud Land. The basement was affected by late Mesoproterozoic and Cambrian deformation and metamorphism. Geological mapping was carried out during the Antarctic Expedition 2000/01 of the Alfred Wegener Institute for Polar and Marine Research. Topographic data were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt/M. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (height differences) are accurate to approximately ±10 m. Published by Fachbereich Geowissenschaften, Universität Bremen & Geologisches Institut, RWTH Aachen.
Resumo:
The glaucophane schists of Oscar II Land, it has been suggested, originated in a compressive plate boundary subduction zone environment. An alternative hypothesis is presented here linking the metamorphism of these schists with that of the surrounding pre-Carboniferous rocks. It has been estimated from mineralogical and textural relationships that at the time of metamorphism these rocks exceeded 30 km in thickness. Similarly, an ambient geothermal gradient of 15° C/km has been calculated for the now exposed succession. Pressures of sufficient magnitude would be realised near the base of this geosynclinal pile to produce eclogite from rocks of basic composition. Subsequent synmetamorphic penetrative deformation would give rise to glaucophane and greenschist facies assemblages.