62 resultados para maximum family sizes
Resumo:
We report on wintertime data collected from Baffin Bay and northern Davis Strait, a major gateway linking the Arctic with the subpolar North Atlantic, using narwhals (Monodon monoceros) as an oceanographic sampling platform. Fourteen narwhals were instrumented with satellite-linked time-depth-temperature recorders between 2005 and 2007. Transmitters collected and transmitted water column temperature profiles from each dive between December and April, where >90% of maximum daily dive depths reached the bottom. Temperature measurements were combined with 15 helicopter-based conductivity-temperature-depth (CTD) casts taken in April 2007 across central Baffin Bay and compared with hydrographic climatology values used for the region in Arctic climate models. Winter temperature maxima for whale and CTD data were in good agreement, ranging between 4.0°C and 4.6°C in inshore and offshore Baffin Bay and in Davis Strait. The warm Irminger Water was identified between 57°W and 59°W (at 68°N) between 200 and 400 m depths. Whale data correlated well with climatological temperature maxima; however, they were on average 0.9°C warmer ±0.6°C (P < 0.001). Furthermore, climatology data overestimated the winter surface isothermal layer thickness by 50-80 m. Our results suggest the previously documented warming in Baffin Bay has continued through 2007 and is associated with a warmer West Greenland Current in both of its constituent water masses. This research demonstrates the feasibility of using narwhals as ocean observation platforms in inaccessible Arctic areas where dense sea ice prevents regular oceanographic measurements and where innate site fidelity, affinity for winter pack ice, and multiple daily dives to >1700 m offer a useful opportunity to sample the area.
Resumo:
Hole 1256C was cored 88.5 m into basement, and Hole 1256D, the deep reentry hole, was cored 502 m into basement during Ocean Drilling Program Leg 206. Hole 1256D is located ~30 m south of Hole 1256C (Wilson, Teagle, Acton, et al., 2003, doi:10.2973/odp.proc.ir.206.2003). A thick massive flow drilled in both holes, Units 1256C-18 and 1256D-1, consists of a single cooling unit of cryptocrystalline to fine-grained basalt, interpreted as a ponded lava, 32 m and at least 74.2 m thick, respectively. This ponded flow gives us a unique opportunity to examine textural variations from the glassy, folded crust of the lava pond recovered from the top of Unit 1256C-18 through the coarse-grained, thick massive lava body to the unusually recrystallized and deformed base cored in Unit 1256C-18. Some detailed descriptions of the textures and grain size variations through the lava pond (Units 1256C-18 and 1256D-1), with special reference to the recrystallization of the base of Unit 1256C-18, are presented here.
Resumo:
Uniaxial strain consolidation experiments were conducted to determine elastic and plastic properties and to estimate the permeability of sediments from 0 to 200 meters below seafloor at Ocean Drilling Program Sites 1194 and 1198. Plastic deformation is described by compression indices, which range from 0.19 to 0.37. Expansion indices, the elastic deformation measured during unload/reload cycles on samples, vary from 0.02 to 0.029. Consolidation experiments provide lower bounds on permeability between 5.4 x 10**-16 m**2 and 1.9 x 10**-18 m**2, depending on the consolidation state of the sample.
(Table 2) Bubble sizes in waters of the Atlantic Ocean from results of measurements aboard R/V Nerey