17 resultados para long-period fiber gratings


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few astronomically calibrated high-resolution (<=5 kyr) climate records exist that span the Oligocene-Miocene time interval. Notably, available proxy records show responses varying in amplitude at frequencies related to astronomical forcing, and the main pacemakers of global change on astronomical time-scales remain debated. Here we present newly generated X-ray fluorescence core scanning and benthic foraminiferal stable oxygen and carbon isotope records from Ocean Drilling Program Site 1264 (Walvis Ridge, southeastern Atlantic Ocean). Complemented by data from nearby Site 1265, the Site 1264 benthic stable isotope records span a continuous ~13-Myr interval of the Oligo-Miocene (30.1-17.1 Ma) at high resolution (~3.0 kyr). Spectral analyses in the stratigraphic depth domain indicate that the largest amplitude variability of all proxy records is associated with periods of ~3.4 m and ~0.9 m, which correspond to 405- and ~110-kyr eccentricity, using a magnetobiostratigraphic age model. Maxima in CaCO3 content, d18O and d13C are interpreted to coincide with ~110 kyr eccentricity minima. The strong expression of these cycles in combination with the weakness of the precession- and obliquity-related signals allow construction of an astronomical age model that is solely based on tuning the CaCO3 content to the nominal (La2011_ecc3L) eccentricity solution. Very long-period eccentricity maxima (~2.4-Myr) are marked by recurrent episodes of high-amplitude ~110-kyr d18O cycles at Walvis Ridge, indicating greater sensitivity of the climate/cryosphere system to short eccentricity modulation of climatic precession. In contrast, the responses of the global (high-latitude) climate system, cryosphere, and carbon cycle to the 405-kyr cycle, as expressed in benthic d18O and especially d13C signals, are more pronounced during ~2.4-Myr minima. The relationship between the recurrent episodes of high-amplitude ~110-kyr d18O cycles and the ~1.2-Myr amplitude modulation of obliquity is not consistent through the Oligo-Miocene. Identification of these recurrent episodes at Walvis Ridge, and their pacing by the ~2.4-Myr eccentricity cycle, revises the current understanding of the main climate events of the Oligo-Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic and selected planktic foraminifera and stable isotope records were determined in a piston core from the Gulf of Aden, NW Arabian Sea that spans the last 530 ka. The benthic foraminifera were grouped into four principal assemblages using Q-mode Principal Component Analyses. Comparison of each of these assemblages with the fauna of the nearby regions enabled us to identify their specific environmental requirements as a function of variability in food supply and strength of the oxygen minimum zone and by that to use them as indicators of surface water productivity. The benthic foraminiferal productivity indicators coupled with the record of Globigerina bulloides, a planktic foraminifer known to be sensitive to productivity changes in the region, all indicate higher productivity during glacial intervals and productivity similar to present or even reduced during interglacial stages. This trend is opposite to the productivity pattern related to the SW summer monsoon of the Arabian Sea and indicates the role of the NE winter monsoon on the productivity of the Gulf of Aden. A period of exceptionally enhanced productivity is recognized in the Gulf of Aden region between ~60 and 13 kyr indicating the intensification of the NE winter monsoon to its maximal activity. Contemporaneous indication of increased productivity in other parts of the Arabian Sea, unexplained so far by the SW summer monsoon variability, might be related to the intensification of the NE winter monsoon. Another prominent event of high productivity, second in its extent to the last glacial productivity event is recognized between 430 and 460 kyr. These two events seem to correspond to periods of similar orbital positioning of rather low precession (and eccentricity) amplitude for a relatively long period. Glacial boundary conditions seem to control to a large extent the NE winter monsoon variability as also indicated by the dominance of the 100 ka cycle in the investigated time series. Secondary in their importance are the 23 and 41 ka cycles which seem also to contribute to the NE monsoonal variability. Following the identification of productivity events related to the NE winter monsoon in the Gulf of Aden, it is possible now to extend this observation to other parts of the Arabian Sea and consider the contribution of this monsoonal system to the productivity fluctuations preserved in the sedimentary records.