625 resultados para liquidity ratios


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the Paleocene-Eocene Thermal Maximum (PETM), rapid release of isotopically light C to the ocean-atmosphere system elevated the greenhouse effect and warmed temperatures by 5-7 °C for 105 yr. The response of the planktic ecosystems and productivity to the dramatic climate changes of the PETM may represent a significant feedback to the carbon cycle changes, but has been difficult to document. We examine Sr/Ca ratios in calcareous nannofossils in sediments spanning the PETM in three open ocean sites as a new approach to examine productivity and ecological shifts in calcifying plankton. The large heterogeneity in Sr/Ca among different nannofossil genera indicates that nannofossil Sr/Ca reflects primary productivity-driven geochemical signals and not diagenetic overprinting. Elevated Sr/Ca ratios in several genera and constant ratios in other genera suggest increased overall productivity in the Atlantic sector of the Southern Ocean during the PETM. Dominant nannofossil genera in tropical Atlantic and Pacific sites show Sr/Ca variations during the PETM which are comparable to background variability prior to the PETM. Despite acidification of the ocean there was not a productivity crisis among calcifying phytoplankton. We use the Pandora ocean box model to explore possible mechanisms for PETM productivity change. If independent proxy evidence for more stratified conditions in the Southern Ocean during the PETM is robust, then maintenance of stable or increased productivity there likely reflects increased nutrient inventories of the ocean. Increased nutrient inventories could have resulted from climatically enhanced weathering and would have important implications for burial rates of organic carbon and stabilization of climate and the carbon cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the influences of temperature, salinity and pH on the calcium isotope as well as trace and minor element (uranium, strontium, magnesium) to Ca ratios on calcium carbonate cysts of the calcareous dinoflagellate species Thoracosphaera heimii grown in laboratory cultures. The natural habitat of this species is the photic zone (preferentially at the chlorophyll maximum depth) of temperate to tropical oceans, and it is abundant in deep-sea sediments over the entire Cenozoic. In our experiments, temperatures ranged from 12 to 30 °C, salinity from 36.5 to 38.8 and pH from 7.9 to 8.4. The delta44/40Ca of T. heimii cysts resembles that of other marine calcifiers, including coccolithophores, foraminifers and corals. However, its temperature sensitivity is considerably smaller and statistically insignificant, and T. heimii might serve as a recorder of changes in seawater delta44/40Ca over geologic time. The Sr/Ca ratios of T. heimii cysts show a pronounced temperature sensitivity (0.016 mmol/mol °C**-1) and have the potential to serve as a palaeo-sea surface temperature proxy. No clear temperature- and pH-dependences were observed for Mg/Ca. U/Ca seems to be influenced by temperature and pH, but the correlations change sign at 23 °C and pH 8.2, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed record of the strontium-87 to strontium-86 ratio in seawater during the last 100 million years was determined by measuring this ratio in 137 well-preserved and well-dated fossil foraminifera samples. Sample preservation was evaluated from scanning electron microscopy studies, measured strontium-calcium ratios, and pore water strontium isotope ratios. The evolution of the strontium isotopic ratio in seawater offers a means to evaluate long-term changes in the global strontium isotope mass balance. Results show that the marine strontium isotope composition can be used for correlating and dating well-preserved authigenic marine sediments throughout much of the Cenozoic to a precision of +/- 1 million years. The strontium-87 to strontium-86 ratio in seawater increased sharply across the Cretaceous/Tertiary boundary, but this feature is not readily explained as strontium input from a bolide impact on land.