30 resultados para linked open data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wetlands store large amounts of carbon, and depending on their status and type, they release specific amounts of methane gas to the atmosphere. The connection between wetland type and methane emission has been investigated in various studies and utilized in climate change monitoring and modelling. For improved estimation of methane emissions, land surface models require information such as the wetland fraction and its dynamics over large areas. Existing datasets of wetland dynamics present the total amount of wetland (fraction) for each model grid cell, but do not discriminate the different wetland types like permanent lakes, periodically inundated areas or peatlands. Wetland types differently influence methane fluxes and thus their contribution to the total wetland fraction should be quantified. Especially wetlands of permafrost regions are expected to have a strong impact on future climate due to soil thawing. In this study ENIVSAT ASAR Wide Swath data was tested for operational monitoring of the distribution of areas with a long-term SW near 1 (hSW) in northern Russia (SW = degree of saturation with water, 1 = saturated), which is a specific characteristic of peatlands. For the whole northern Russia, areas with hSW were delineated and discriminated from dynamic and open water bodies for the years 2007 and 2008. The area identified with this method amounts to approximately 300,000 km**2 in northern Siberia in 2007. It overlaps with zones of high carbon storage. Comparison with a range of related datasets (static and dynamic) showed that hSW represents not only peatlands but also temporary wetlands associated with post-forest fire conditions in permafrost regions. Annual long-term monitoring of change in boreal and tundra environments is possible with the presented approach. Sentinel-1, the successor of ENVISAT ASAR, will provide data that may allow continuous monitoring of these wetland dynamics in the future complementing global observations of wetland fraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a hydrologic reconstruction of the Sahara-Sahel transition, covering the complete last glacial cycle (130 ka), based on a combination of plant-wax-specific hydrogen (dD) and carbon isotopes (d13C). The dD and d13C signatures of long-chain n-alkanes from ODP Site 659 off NW Africa reveal a significant anti-correlation. Complementary to published pollen data, we infer that this plant-wax signal reflects sensitive responses of the vegetation cover to precipitation changes in the Sahel region, as well as varying contributions from biomes north of the Sahara (C3 domain) by North-East Trade Winds (NETW). During arid phases, especially the northern parts of the Sahel likely experienced crucial water stress, which resulted in a pronounced contraction of the vegetation cover, thus reducing the amount of C4 plant waxes from the region. The increase in NETW strength during dry periods further promoted a more pronounced C3-plant-wax signal derived from the North African C3 plant domain. During humid periods, the C4-dominated Sahelian environments spread northward into the Saharan realm, in association with lower NETW inputs of C3 plant waxes. Arid-humid cycles deduced from plant-wax dD are in accordance with concomitant changes in weathering intensity reflected in varying major element distributions. Environmental shifts are generally linked to periods with large fluctuations in Northern Hemisphere summer insolation. During Marine Isotope Stages 2 and 3, when insolation variability was low, coupling of the hydrologic regime to alkenone-based estimates of NE Atlantic sea-surface temperatures becomes apparent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of total organic carbon (TOC) were determined on samples collected during six cruises in the northern Arabian Sea during the 1995 US JGOFS Arabian Sea Process Study. Total organic carbon concentrations and integrated stocks in the upper ocean varied both spatially and seasonally. Highest mixed-layer TOC concentrations (80-100 µM C) were observed near the coast when upwelling was not active, while upwelling tended to reduce local concentrations. In the open ocean, highest mixed-layer TOC concentrations (80-95 µM C) developed in winter (period of the NE Monsoon) and remained through mid summer (early to mid-SW Monsoon). Lowest open ocean mixed-layer concentrations (65-75 µM C) occurred late in the summer (late SW Monsoon) and during the Fall Intermonsoon period. The changes in TOC concentrations resulted in seasonal variations in mean TOC stocks (upper 150 m) of 1.5-2 mole C/m**2, with the lowest stocks found late in the summer during the SW Monsoon-Fall Intermonsoon transition. The seasonal accumulation of TOC north of 15°N was 31-41 x 10**12 g C, mostly taking place over the period of the NE Monsoon, and equivalent to 6-8% of annual primary production estimated for that region in the mid-1970s. A net TOC production rate of 12 mmole C/m**2/d over the period of the NE Monsoon represented ~80% of net community production. Net TOC production was nil during the SW Monsoon, so vertical export would have dominated the export terms over that period. Total organic carbon concentrations varied in vertical profiles with the vertical layering of the water masses, with the Persian Gulf Water TOC concentrations showing a clear signal. Deep water (>2000 m) TOC concentrations were uniform across the basin and over the period of the cruises, averaging 42.3±1.4 µM C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of seagrass and associated benthic communities on the reef and lagoon of Low Isles, Great Barrier Reef, was mapped between the 29 July and 29 August 1997. For this survey, observers walked or free-dived at survey points positioned approximately 50 m apart along a series of transects. Visual estimates of above-ground seagrass biomass and % cover of each benthos and substrate type were recorded at each survey point. A differential handheld global positioning system (GPS) was used to locate each survey point (accuracy ±3m). A total of 349 benthic survey points were examined. To assist with mapping meadow/habitat type boundaries, an additional 177 field points were assessed and a georeferenced 1:12,000 aerial photograph (26th August 1997) was used as a secondary source of information. Bathymetric data (elevation below Mean Sea Level) measured at each point assessed and from Ellison (1997) supplemented information used to determine boundaries, particularly in the subtidal lagoon. 127.8 ±29.6 hectares was mapped. Seagrass and associated benthic community data was derived by haphazardly placing 3 quadrats (0.25m**2) at each survey point. Seagrass above ground biomass (standing crop, grams dry weight (g DW m**-2)) was determined within each quadrat using a non-destructive visual estimates of biomass technique and the seagrass species present identified. In addition, the cover of all benthos was measured within each of the 3 quadrats using a systematic 5 point method. For each quadrat, frequency of occurrence for each benthic category was converted to a percentage of the total number of points (5 per quadrat). Data are presented as the average of the 3 quadrats at each point. Polygons of discrete seagrass meadow/habitat type boundaries were created using the on-screen digitising functions of ArcGIS (ESRI Inc.), differentiated on the basis of colour, texture, and the geomorphic and geographical context. The resulting seagrass and benthic cover data of each survey point and for each seagrass meadow/habitat type was linked to GPS coordinates, saved as an ArcMap point and polygon shapefile, respectively, and projected to Universal Transverse Mercator WGS84 Zone 55 South.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Underwater georeferenced photo-transect survey was conducted on September 23 - 27, 2007 at different sections of the reef flat, reef crest and reef slope in Heron Reef. For this survey a snorkeler or diver swam over the bottom while taking photos of the benthos at a set height using a standard digital camera and towing a surface float GPS which was logging its track every five seconds. A standard digital compact camera was placed in an underwater housing and fitted with a 16 mm lens which provided a 1.0 m x 1.0 m footprint, at 0.5 m height above the benthos. Horizontal distance between photos was estimated by three fin kicks of the survey diver/snorkeler, which corresponded to a surface distance of approximately 2.0 - 4.0 m. The GPS was placed in a dry-bag and logged its position as it floated at the surface while being towed by the photographer. A total of 3,586 benthic photos were taken. A floating GPS setup connected to the swimmer/diver by a line enabled recording of coordinates of each benthic. Approximation of coordinates of each benthic photo was done based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software (www.geospatialexperts.com). Coordinates of each photo were interpolated by finding the gps coordinates that were logged at a set time before and after the photo was captured. Benthic or substrate cover data was derived from each photo by randomly placing 24 points over each image using the Coral Point Count excel program (Kohler and Gill, 2006). Each point was then assigned to 1 out of 80 cover types, which represented the benthic feature beneath it. Benthic cover composition summary of each photo scores was generated automatically using CPCE program. The resulting benthic cover data of each photo was linked to gps coordinates, saved as an ArcMap point shapefile, and projected to Universal Transverse Mercator WGS84 Zone 56 South.