166 resultados para islands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic impact on biomass of coastal plankton communities caused by submerged disposal of urban sewage waters (dumping) was studied. Observations were carried out in August-September of 2002-2004 in the Mamala Bay (Oahu Island, Hawaii Islands) using satellite and straight sea measurements. An analysis of variability of integral indicators of the water column determined on the basis of on-board measurements allowed us to divide them into two groups: elements most sensitive to pollution (heterotrophic bacteria (H-Bact), phototrophic cyanobacteria Synechococcus spp. (SYN), and chlorophyll a (CHLa)) and elements that manifested episodic positive dependence on inflow of polluted waters (heterotrophic unicellular eukaryotes, small unicellular algae, phototrophic green bacteria Prochlorococcus spp., as well as total biomass of microplankton). It was shown that submerged waste water disposal in the region of the diffuser of the dumping device led to insignificant (aver. 1.2-1.4 times) local increase in integral biomass of H-Bact, SYN, and in concentration of CHLa. Similar but sharper (aver. 1.5-2.1 times) increase in these parameters was found in water layers with maximal biomasses. Possible pathways of disposed waters (under the pycnocline, at its upper boundary, and in the entire mixed layer) were analyzed on the basis of studying vertical displacement of biomasses of H-Bact, SYN, and prochlorophytes. Possibility of using optical anomalies distinguished from satellite data as markers of anthropogenic eutrophication caused by dumping was confirmed. Application of such markers depends on water transparency and on shapes of curves of vertical distribution of autotrophic organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5-37 mg/kg, Cu 20-190 mg/kg, Zn 50-300 mg/kg, Pb 4.5- 34 mg/kg). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was inspired by information on Paleozoic andesites, dacites, and diabases on the Belkovsky Island in the 1974 geological survey reports used to reconstruct tectonic evolution of the continental block comprising the New Siberian Islands and the bordering shelf. We did not find felsic volcanics or Middle Paleozoic intrusions in the studied area of the island. Igneous rocks are mafic subvolcanic intrusions including dikes, randomly shaped bodies, explosion breccias, and peperites. They belong to the tholeiitic series and are similar to Siberian traps in petrography and trace-element compositions, with high LREE and LILE and prominent Nb negative anomalies. The island arc affinity is due to continental crust contamination of mantle magma and its long evolution in chambers at different depths. K-Ar biotite age (252+/-5 Ma) of magmatism indicates that it was coeval to the main stage of trap magmatism in the Siberian craton at the Permian-Triassic boundary. The terrane including the New Siberian Islands occurred on the periphery of the Siberian trap province where magmatism acted in rifting environment. Magma intruded into semiliquid wet sediments at shallow depths shortly after their deposition. Therefore, the exposed Paleozoic section in Belkovsky Island may include Permian or possibly Lower Triassic sediments of younger ages than it was believed earlier.