446 resultados para iron-bound phosphate


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Green clay layers are reported from the Pliocene-Holocene intervals in five of the six sites drilled in the South China Sea (SCS) during Leg 184. Centimeter-scale discrete, discontinuous, and bioturbated layers, constituted by stiff and porous green clays, were observed, sometimes associated with iron sulfides and pyrite. Detailed mineralogical and geochemical analyses indicate that they differentiate from the host sediments in their higher content of iron, smectite, and mixed-layered clays and lower amounts of calcite, authigenic phosphorus, quartz, and organic matter. Although no glauconite was observed, the mineralogy and geochemistry of green clay layers, along with their geometrical relation to background sediments, suggest that they most likely represent the result of the first steps of glauconitization. Correlation between green layers and volcanic ash layers was suggested for green laminae observed elsewhere in Pacific sediments but was not confirmed at SCS sites. Statistical analysis of the temporal distribution of green layers in the records of the last million years suggests that green clay layers have become more frequent since 600 ka. Only at Site 1148 does the green layer record show a statistically significant cyclicity which may be related to orbital eccentricity. A possible influence of sea level variations, related both to climatic changes and tectonism, is postulated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We determined phosphorus (P) concentrations in Leg 138 sediment samples from Sites 844, 846, and 851, using a sequential extraction technique to identify the P associated with five sedimentary components. Total concentrations of P (sum of the five components) ranged from 4 to 35 µmol P/g sediment, with mean values relatively similar between the three sites (11, 14, and 12 for Sites 844,846, and 851, respectively). Authigenic/biogenic P was the most important component in terms of percentage of total P (about 75%), with iron-bound P (13%), adsorbed P (2%-9%), and organic P (4%) of secondary importance; detrital P was a minor P sink (1%) in these sediments. Profiles of adsorbed P and iron-bound P show decreasing concentrations with age, indicating that these components have been affected by diagenesis and reorganization of P. A peak in iron-bound P may reflect higher fluxes of hydrothermally derived Fe to eastern equatorial Pacific Ocean sediments from 11 to 8 Ma. Lower detrital P values for western Site 851 reflect a greater distance of this site from a terrigenous source area, compared to that of Sites 844 and 846. Phosphorus mass accumulation rates (P-MARs; units of µmol P/cm**2/k.y.) were calculated using total P concentrations (not including the minor and oceanically unreactive detrital P component) and sedimentation rates and dry-bulk densities averaged over time intervals of 0.5 m.y. P-MARs generally decrease from 17 Ma to the present. Eastern transect Sites 844 and 846 display a decrease in P-MARs from about 30 to 10 in the interval from 17 to 8 Ma, while western transect Site 851 is highly variable during this interval. P-MARs increase to about 45 and stay relatively high from 8 to 6 Ma, then decrease toward the present to some of the lowest values of the record (about 10). The general trend of high P-MARs at about 6 Ma and decreasing values toward the present is correlated with other geochemical and sedimentary trends through this interval and may reflect (1) a change in net sediment and P burial, (2) a reorganization of fluxes with no change of net burial, or (3) a combination of the two.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Study of chemical composition of 26 samples collected at depths from 400 to 1400 m on vertex surfaces of the Southeast Indian Ridge, Mascarene Ridge, Madagascar Ridge, and Mozambique Ridge, as well as on the upper part of the Southeast Africa continental slope showed that the samples represent three groups of rocks: 1) low phosphate or phosphate-free ferromanganese rocks, 2) phosphate ferromanganese rocks 3) phosphorites and phosphatized limestones.