202 resultados para ion implantation and irradiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological data and models of coral calcification indicate that corals utilize a combination of seawater bicarbonate and (mainly) respiratory CO2 for calcification, not seawater carbonate. However, a number of investigators are attributing observed negative effects of experimental seawater acidification by CO2 or hydrochloric acid additions to a reduction in seawater carbonate ion concentration and thus aragonite saturation state. Thus, there is a discrepancy between the physiological and geochemical views of coral biomineralization. Furthermore, not all calcifying organisms respond negatively to decreased pH or saturation state. Together, these discrepancies suggest that other physiological mechanisms, such as a direct effect of reduced pH on calcium or bicarbonate ion transport and/or variable ability to regulate internal pH, are responsible for the variability in reported experimental effects of acidification on calcification. To distinguish the effects of pH, carbonate concentration and bicarbonate concentration on coral calcification, incubations were performed with the coral Madracis auretenra (= Madracis mirabilis sensu Wells, 1973) in modified seawater chemistries. Carbonate parameters were manipulated to isolate the effects of each parameter more effectively than in previous studies, with a total of six different chemistries. Among treatment differences were highly significant. The corals responded strongly to variation in bicarbonate concentration, but not consistently to carbonate concentration, aragonite saturation state or pH. Corals calcified at normal or elevated rates under low pH (7.6-7.8) when the seawater bicarbonate concentrations were above 1800 µm. Conversely, corals incubated at normal pH had low calcification rates if the bicarbonate concentration was lowered. These results demonstrate that coral responses to ocean acidification are more diverse than currently thought, and question the reliability of using carbonate concentration or aragonite saturation state as the sole predictor of the effects of ocean acidification on coral calcification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the sensitivity of U/Ca, Mg/Ca, and Sr/Ca to changes in seawater [CO3[2-]] and temperature in calcite produced by the two planktonic foraminifera species, Orbulina universa and Globigerina bulloides, in laboratory culture experiments. Our results demonstrate that at constant temperature, U/Ca in O. universa decreases by 25 +/- 7% per 100 µmol [CO3[2-]] kg**-1, as seawater [CO3[2-]] increases from 110 to 470 µmol kg**-1. Results from G. bulloides suggest a similar relationship, but U/Ca is consistently offset by ~+40% at the same environmental [CO3[2-]]. In O. universa, U/Ca is insensitive to temperature between 15°C and 25°C. Applying the O. universa relationship to three U/Ca records from a related species, Globigerinoides sacculifer, we estimate that Caribbean and tropical Atlantic [CO3[2-]] was 110 +/- 70 µmol kg**-1 and 80 +/- 40 µmol kg**-1 higher, respectively, during the last glacial period relative to the Holocene. This result is consistent with estimates of the glacial-interglacial change in surface water [CO3[2-]] based on both modeling and on boron isotope pH estimates. In settings where the addition of U by diagenetic processes is not a factor, down-core records of foraminiferal U/Ca have potential to provide information about changes in the ocean's carbonate concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Red Sea has a special place among the adjacent seas of the world. High evaporation, exclusion of its deep water from contact with the Indian Ocean proper and complete absence of continental drainage may result special conditions of the chemistry of the Red Sea. This paper aims to describe and explain the peculiarity of the hydrochemical situation. The influence of the topography, of the inflow and outflow through the straights of Bab el Mandeb, of the evaporation, of the stability of the water layers, and of the circulation will be studied. An attempt is made to estimate the apparent oxygen ultilisation in order to obtain an indication of the biological activity. A further attempt is made toward the quantitative estimation of the circulation of the nutrients and also to obtain some information about transport, dissolution, and precipitation of calcium carbonate. The basis of these investigations are mainly observations of R. V. "Meteor" during the International Indian Ocean Expedition 1964/65. The determination of dissolved oxygen, dissolved inorganic phosphate, nitrate, nitrite, ammonia, pH, alkalinity, silicate as well as salinity and temperature forms the necessary basis for such an investigation of the chemical conditions. In the first chapter the methods and some modifications for the determination of the chemical properties as applied during the I.I.O.E. cruise of R. V. "Meteor" are described. The new methods, as worked out and tested under sea going conditions during several years by the author, are described in more detail. These are the methods for nitrate, silicate, the automatic determination of dissolved inorganic phosphate and silicate, the automated determination of total phosphorus, the in situ recording of the oxygen tension, and the modification for the determination of ammonia, calcium, and dissolved oxygen. With these revised methods more than 18,000 determinations have been carried out during the Indian Ocean cruise. The complete working up of the chemical data of the Indian Ocean Expedition of R. V. "Meteor" is devided into four sections: Contributions 1) to the Chemistry of the Red Sea and the Inner Gulf of Aden, 2) to the Gulf of Aden and the Somali Coast Region, 3) to the Western Indian Coast Region, and 4) to the Persian Gulf and the Straits of Oman. This paper presents the first contribution. The special hydrographical conditions are discussed. It can be shown, that the increase of salinity in the surface waters from the south to the north of the Red Sea is only to about 30 % due to evaporation. The remaining increase is presumed to be due to the admixture of deep water to the surface layers. A special rate for the consumption of oxygen (0.114 ml/ l/a) is derived for the deep water of the Red Sea at 1500 m. Based upon the distribution of the dissolved oxygen along the axii of the Red Sea, a chematic model for the longitudinal circulation of the Red Sea is constructed. This model should be considered as a first approximation and may explain the special distribution of phosphate, nitrate, and silicate. Based upon the evaluation of the residence time of the deep water a dissolution rate for silicate is estimated as 1 mygat/a. It seems possible to calculate residence times of water masses outside the Red Sea from the silicate content. The increase of silicate and the consumption of oxygen lead to residence times of the water below the thermocine of 30 to 48 years. The distribution of oxygen in the Straits of Bab el Mandeb is described and discussed. The rate of consumption of the oxygen in the outflowing Red Sea water is estimated to 8.5 ml/ l/a. This rather high rate is explained with reference to the special conditions in the outflowing water. The Red Sea water is characterized initially by a relative high content of oxygen and a low content of nutrients. The increase in nutrients and the decrease in the oxygen content is a secondary process of the Red Sea water on its way to the Arabian Sea. Based upon the vertical distribution of the dissolved inorganic phosphate vertical exchange coefficients of 1 - 4 g/cm/sec and vertical current speeds of 10**-5 to 10**-4 cm/sec are calculated for some stations in the Red Sea. The distribution of phosphate, silicate, nitrate, nitrite and ammonia for the Red Sea and the Straits of Bab el Mandeb are discussed. The special circulation is evaluated and the balance of the nutrients is estimated by means of the brutto transport. The nutrient deficit is assumed to be balanced by sporadic inflow of intermediate water from the Gulf of Aden. An example for such an inflow has been observed and is demonstrated. The silicate-salinity relationships are a suitable way for characterizing water masses in the Red Sea. Equations for the calculation of the different components from the carbonate system, the ion activities, and the calcium carbonate saturation are evaluated. The influence of temperature and pressure is taken into account. The carbonate saturation is calculated from the determined concentrations of calcium, alkalinity, and the hydrogen ion activity. Saturation values of 320 % are found for the surface layer and of 100% ± 1 for the deep water. The extraordinary equilibrium conditions may explain the constant Ca/Cl ratio and also the sedimentation of undissolved carbonate skelecons even in greater depths. A main sedimentation rate of 2 * 10**-3cm/year is evaluated from a total sedimentation of 10 * 106 to/a of calcium carbonate in the Red Sea. The appendix contains those data, which are not published in the data volume of the I.I.O.E. expedition of R. V. "Meteor".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present data publication provides permanent links to original and updated versions of validated data files. The data files include properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major and trace element profiles of clinopyroxene grains in oceanic gabbros from ODP Hole 735B have been investigated by a combined in situ analytical study with ion probe, and electron microprobe. In contrast to the homogeneous major element compositions, trace elements (REE, Y, Cr, Sr, and Zr) show continuous core to rim zoning profiles. The observed trace element systematics in clinopyroxene cannot be explained by a simple diffusive exchange between melts and gabbros along grain boundaries. A simultaneous modification of the melt composition is required to generate the zoning, although Rayleigh fractional crystallization modelling could mimic the general shape of the profiles. Simultaneous metasomatism between the cumulate crystal and the porous melt during crystal accumulation is the most likely process to explain the zoning. Deformation during solidification of the crystal mush could have caused squeezing out of the incompatible element enriched residual melts (interstitial liquid). Migration of the melt along grain boundaries might carry these melt out of the system. This process named as synkinematic differentiation or differentiation by deformation (Natland and Dick, 2001, doi:10.1016/S0377-0273(01)00211-6) may act as an important magma evolution mechanism in the oceanic crust, at least at slow-spreading ridges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium/calcium (Sr/Ca) ratios in bulk and foraminiferal calcite have been used to constrain the history of Sr/Ca in the oceans and to evaluate calcite diagenetic alteration. However bulk Sr/Ca records also may be influenced by differences in Sr uptake and/or in the diagenetic susceptibility of different calcium carbonate sedimentary components. We present data on the sediment size fraction and calcium carbonate distribution in bulk samples, Sr/Ca in a range of sedimentary size components, and Sr/Ca in bulk sediments. Ocean Drilling Program samples from sites on Ontong Java Plateau and Ceara Rise (in the western equatorial Pacific and Atlantic, respectively) and from sites in the eastern equatorial Pacific were selected to represent progressive stages in the diagenetic pathway from the sea floor through a range of burial depths equivalent to sediment ages of ~5.6, ~9.4, and ~37.1 Ma. Samples were subdivided by size to produce a unique data set of size-specific Sr/Ca ratios. Fine fraction (<45 ?m) Sr/Ca ratios are higher than those of all corresponding coarse fractions, indicating that fine nannofossil-dominated calcite has a Sr partition coefficient 1.3-1.5 times greater than that of coarse foraminifera-dominated calcite. Thus, absolute values of bulk Sr/Ca in contemporaneous samples reflect, in part, the ratio of fine to coarse calcite sedimentary components. Sr/Ca values in fine and coarse components also behave differently in their response to pre-burial dissolution and to recrystallization at depth. Coarse size components are sensitive to bottom water carbonate ion undersaturation, and they lose original Sr/Ca differences among contemporary samples over not, vert, similar10 my. In contrast, fine components recrystallize faster in more deeply buried samples. Interpretation of the historical Sr/Ca record is complicated by post-depositional diagenetic artifacts, and thus our data do not provide clear evidence of specific temporal changes in oceanic Sr/Ca ratios over the past 10 million years. This paper represents the first systematic attempt to examine trends in calcite Sr/Ca as a function of sediment size fraction and age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.