35 resultados para grúa
Resumo:
A basaltic tephra layer consisting of brownish-olive glass shards. and about 0.2 mm thick. was found in cores from four lakes in northwest Germany. According to pollen analysis it was deposited during the early Boreal period (corresponding to about 8700 BP). The petrographic properties. the geochemical composition and the age agree with those of the Saksunarvatn tephra. which was first found on the Faroe Islands. The position of the tephra layer in the pollen stratigraphy and in the absolute time-scale is discussed. Procedures for locating the tephra in other cores are suggested.
Resumo:
A total of 776 sediment samples were measured for percent CaCO3 using a coulometer. These data are compared with percent blue reflectance (450-550 nm) measured with the Oregon State University split-core analysis track. In previous studies percent blue reflectance has been an excellent proxy for percent CaCO3 and in this study shows many of the main depositional trends (i.e., a 100-k.y. cycle, with a 55% reflectance range is evident in the upper 900 k.y., underlain by sediments exhibiting a 40-k.y. cycle with only a 30% reflectance range). Between ~21 and 5 Ma the average percent reflectance decreases from ~35% to ~8%. A similar decrease is also recorded between ~24 and 22 Ma. Percent CaCO3 trends closely match those of the percent blue spectral reflectance. This is especially well shown in the 100-k.y. cyclicity and in the interval between 24.5 and 21.5 Ma. In both intervals CaCO3 analyses are abundant. An exception occurs in the interval between 2 and 5 meters composite depth (~193 and 240 k.y.). There, percent CaCO3 and percent reflectance are out of phase. The lack of agreement is not likely to be due to a very wet core, in which water would dominate the spectral reflectance instead of sediment, or to problems with the composite depth slice. The discrepancy remains unexplained and provides clear evidence that when noninvasive measurements are used as proxies for chemical measurements they must be substantiated by the actual chemical or physical measurements.
Resumo:
Pollen and macrofossil evidence for the nature of the vegetation during glacial and interglacial periods in the regions south of the Wisconsinan ice margin is still very scarce. Modern opinions concerning these problems are therefore predominantly derived from geological evidence only or are extrapolated from pollen studies of late Wisconsinan deposits. Now for the first time pollen and macrofossil analyses are available from south-central Illinois covering the Holocene, the entire Wisconsinan, and most probably also Sangamonian and late Illinoian time. The cores studied came from three lakes, which originated as kettle holes in glacial drift of Illinoian age near Vandalia, Fayette County. The Wisconsinan ice sheet approached the sites from the the north to within about 60 km distance only. One of the profiles (Pittsburg Basin) probably reaches back to the late Illinoian (zone 1), which was characterized by forests with much Picea. Zone 2, most likely of Sangamonian age, represents a period of species-rich deciduous forests, which must have been similar to the ones that thrive today south and southeast of the prairie peninsula. During the entire Wisconsinan (14C dates ranging from 38,000 to 21,000 BP) thermophilous deciduous trees like Quercus, Carya, and Ulmus occurred in the region, although temporarily accompanied by tree genera with a more northerly modern distribution, such as Picea, which entered and then left south-central Illinois during the Woodfordian. Thus it is evident that arctic climatic conditions did not prevail in the lowlands of south-central Illinois (about 38°30' lat) during the Wisconsinan, even at the time of the maximum glaciation, the Woodfordian. The Wisconsinan was, however, not a period of continuous forest. The pollen assemblages of zone 3 (Altonian) indicate prairie with stands of trees, and in zone 4 the relatively abundant Artemisia pollen indicates the existence of open vegetation and stands of deciduous trees, Picea, and Pinus. True tundra may have existed north of the sites, but if so its pollen rain apparently is marked by pollen from nearby stands of trees. After the disappearance of Pinus and Picea at about 14,000 BP (estimated!), there developed a mosaic of prairies and stands of Quercus, Carya, and other deciduous tree genera (zone 5). This type of vegetation persisted until it was destroyed by cultivation during the 19th and 20th century. Major vegetational changes are not indicated in the pollen diagram for the late Wisconsinan and the Holocene. The dating of zones 1 and 2 is problematical because the sediments are beyond the14C range and because of the lack of stratigraphic evidence. The zones dated as Illinoian and Sangamonian could also represent just a Wisconsinan stadial and interstadial. This possibility, however, seems to be contradicted by the late glacial and interglacial character of the forest vegetation of that time.