18 resultados para fluorapatite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To reconstruct the cycling of reactive phosphorus (P) in the Bering Sea, a P speciation record covering the last ~ 4 Ma was generated from sediments recovered during Integrated Ocean Drilling Program (IODP) Expedition 323 at Site U1341 (Bowers Ridge). A chemical extraction procedure distinguishing between different operationally defined P fractions provides new insight into reactive P input, burial and diagenetic transformations. Reactive P mass accumulation rates (MARs) are ~ 20-110 µmol/cm2/ka, which is comparable to other open ocean locations but orders of magnitude lower than most upwelling settings. We find that authigenic carbonate fluorapatite (CFA) and opal-bound P are the dominant P fractions at Site U1341. An overall increasing contribution of CFA to total P with sediment depth is consistent with a gradual "sink switching" from more labile P fractions (fish remains, Fe oxides, organic matter) to stable authigenic CFA. However, the positive correlation of CFA with Al content implies that a significant portion of the supposedly reactive CFA is non-reactive "detrital contamination" by eolian and/or riverine CFA. In contrast to CFA, opal-bound P has rarely been studied in marine sediments. We find for the first time that opal-bound P directly correlates with excess silica contents. This P fraction was apparently available to biosiliceous phytoplankton at the time of sediment deposition and is a long-term sink for reactive P in the ocean, despite the likelihood for diagenetic re-mobilisation of this P at depth (indicated by increasing ratios of excess silica to opal-bound P). Average reactive P MARs at Site U1341 increase by ~ 25% if opal-bound P is accounted for, but decrease by ~ 25% if 50% of the extracted CFA fraction (based on the lowest CFA value at Site U1341) is assumed to be detrital. Combining our results with literature data, we present a qualitative perspective of terrestrial CFA and opal-bound P deposition in the modern ocean. Riverine CFA input has mostly been reported from continental shelves and margins draining P-rich lithologies, while eolian CFA input is found across wide ocean regions underlying the Northern Hemispheric "dust belt". Opal-bound P burial is important in the Southern Ocean, North Pacific, and likely in upwelling areas. Shifts in detrital CFA and opal-bound P deposition across ocean basins likely occurred over time, responding to changing weathering patterns, sea level, and biogenic opal deposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of authigenic phosphorus (P) minerals in marine sediments typically focus on authigenic carbonate fluorapatite, which is considered to be the major sink for P in marine sediments and can easily be semi-quantitatively extracted with the SEDEX sequential extraction method. The role of other potentially important authigenic P phases, such as the reduced iron (Fe) phosphate mineral vivianite (Fe(II)3(PO4)*8H2O) has so far largely been ignored in marine systems. This is, in part, likely due to the fact that the SEDEX method does not distinguish between vivianite and P associated with Fe-oxides. Here, we show that vivianite can be quantified in marine sediments by combining the SEDEX method with microscopic and spectroscopic techniques such as micro X-ray fluorescence (µXRF) elemental mapping of resin-embedded sediments, as well as scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) and powder X-ray diffraction (XRD). We further demonstrate that resin embedding of vertically intact sediment sub-cores enables the use of synchrotron-based microanalysis (X-ray absorption near-edge structure (XANES) spectroscopy) to differentiate between different P burial phases in aquatic sediments. Our results reveal that vivianite represents a major burial sink for P below a shallow sulfate/methane transition zone in Bothnian Sea sediments, accounting for 40-50% of total P burial. We further show that anaerobic oxidation of methane (AOM) drives a sink-switching from Fe-oxide bound P to vivianite by driving the release of both phosphate (AOM with sulfate and Fe-oxides) and ferrous Fe (AOM with Fe-oxides) to the pore water allowing supersaturation with respect to vivianite to be reached. The vivianite in the sediment contains significant amounts of manganese (~4-8 wt.%), similar to vivianite obtained from freshwater sediments. Our results indicate that methane dynamics play a key role in providing conditions that allow for vivianite authigenesis in coastal surface sediments. We suggest that vivianite may act as an important burial sink for P in brackish coastal environments worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uncertainty currently exists about the removal of carbon (C) and phosphorus (P) from the oceanic reservoir, especially in low oxygen settings. In this paper, the cycling of C and P is examined in sediments from the anoxic Saanich Inlet, cored by Ocean Drilling Program (ODP) Leg 169S in 1996 at two sites. Although Corg/Porg ratios are high and increase with depth in the Saanich Inlet, this effect is due largely to a remobilization of P from an organic matter sink to an authigenic sink. Reducible sedimentary components act as temporary shuttles in this process even in this anoxic setting, with the ultimate burial sink for the remobilized P being carbonate fluorapatite. The effective Corg/Preactive molar ratio appears to be about 150-200, indicating some preferential loss of P compared to C during organic matter degradation, but not approaching previously reported values of over 3000 in black shales. Reactive P accumulation rates in this basin range from 10,000-60,000 µmol/cm**2/kyr, greatly exceeding the range of 500-8000 µmol/cm**2/kyr found in most continental-margin settings, including regions of modern phosphogenesis. The initiation of marine sedimentation in the Saanich Inlet occurred after deglaciation, and the high rates of P burial seen here may provide an end-member example of the effects of sea level and margin sedimentation on the distribution of P within the marine P cycle.