92 resultados para farm irrigation water productivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cores from four Ocean Drilling Program (ODP) sites were examined for planktonic foraminifers. One sample per core (from core-catchers in Holes 806B and 807B and from Section 4 in Holes 847B and 852B) was examined through the interval representing the last 5.8 m.y. Sites 806 (0°19.1'N; 159°21.7'E) and 847 (0o12.1'N; 95°19.2'W) are beneath the equatorial divergence zone. Sites 807 (3°36.4'N; 156°37.5'E) and 852 (5°19.6'N; 110°4.6'W) are located north of the equator in the convergence zone created by the interaction of the westward-flowing South Equatorial Current (SEC) and the eastward-flowing North Equatorial Countercurrent (NECC). Specimens were identified to species and then grouped according to depth habitat and trophic level. Species richness and diversity were also calculated. Tropical neogloboquadrinids have been more abundant in the eastern than in the western equatorial Pacific Ocean throughout the last 5.8 m.y. During the mid-Pliocene (3.8-3.2 Ma), their abundance increased at all sites, while during the Pleistocene (after ~ 1.6 Ma), they expanded in the east and declined in the west. This suggests an increase in surface-water productivity across the Pacific Ocean during the closing of the Central American seaway and an exacerbation of the productivity asymmetry between the eastern and western equatorial regions during the Pleistocene. This faunal evidence agrees with eolian grain-size data (Hovan, 1995) and diatom flux data (Iwai, this volume), which suggest increases in tradewind strength in the eastern equatorial Pacific that centered around 3.5 and 0.5 Ma. The present longitudinal zonation of thermocline dwelling species, a response to the piling of warm surface water in the western equatorial region of the Pacific, seems to have developed after 2.4 Ma, not directly after the closing of the Panama seaway (3.2 Ma). Apparently, after 2.4 Ma, the piling warm water in the west overwhelmed the upwelling of nutrients into the photic zone in that region, creating the Oceanographic asymmetry that exists in the modern tropical Pacific and is reflected in the microfossil record. In the upper Miocene and lower Pliocene sediments, the ratio of thermocline-dwelling species to mixed-layer dwellers is 60%:40%. During the mid-Pliocene, the western sites became 40% thermocline and 60% mixed-layer dwellers. Subsequent to -2.4 Ma, the asymmetry increased to 20%: 80% in the west and the reverse in the east. This documents the gradual thickening of the warm-water layer piled up in the western tropical Pacific over the last 5.8 m.y. and reveals two "steps" in the biotic trend that can be associated with specific events in the physical environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indicators of surface-water productivity and bottom-water oxygenation have been studied for the age interval from the latest Pleistocene to the Holocene at three holes (679D, 680B, and 68IB) located in the center and at the edges of an upwelling cell at approximately 11°S on the Peruvian continental margin. Upwelling activity was maximal at this latitude during d18O Stages 1 (lower part), 3, the upper part of 5, the lower part of 6, and 7, as documented by high diatom abundance. During these time intervals, the bottom water was poorly oxygenated, as documented by low diversity benthic foraminiferal assemblages that are dominated by B. seminuda s.l. Both surface- and bottom-water-circulation patterns appear to have changed rapidly over short time intervals. Due to changes in surface circulation, the intensity of upwelling decreased, thereby decreasing the concentration of nutrients, and reducing the supply of organic matter to the bottom. Radiolarians became more abundant in the surface waters, and the bottom-water environment was less depleted in oxygen, allowing for the establishment of more diverse benthic foraminiferal assemblages. Surface-water productivity was probably minimal during the early part of d18O Stages 5 and 9, as indicated by the increased abundance of planktonic foraminifers and pteropods and their subsequent preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured carbonate concentrations in Pleistocene and Pliocene sediments deposited at Sites 709, 710, and 711. Carbonate concentrations exhibit low-amplitude, long-wave length (300-400 k.y. period) variations at the shallowest sites (709 and 710). Before 2.47 Ma, all three sites exhibit higher frequency (100 k.y. period) variations. The deepest site (711) exhibited low-amplitude variations and very low concentrations up to the Gauss/Matuyama magnetic reversal (2.47 Ma), then concentrations abruptly increased. After 2.47 Ma, carbonate concentrations at Site 711 exhibited the same periodic changes as at Site 709. Although a long wave-length periodicity (260-280 k.y.) occurs at these sites after 2.47 Ma, the 100 k.y. period is absent. The dominant periods observed in these data are those found in the eccentricity component of the earth's orbital geometry. Estimates of carbonate accumulation at Sites 709 and 710 document that surface-water productivity decreased near the Gauss/Matuyama magnetic reversal whereas accumulation at Site 711 increased. These results indicate that the rate of carbonate preservation in the deep Indian Ocean increased at that time. This increase in preservation may have re- sulted from a decrease in the production rate of carbonate in tropical oceans of the world. Carbonate accumulation esti- mated from sediments in shallow locations (~3000-3800 m) of the Atlantic and Pacific oceans also indicates that carbonate production decreased at this time. A consequence of lowered surface-water productivity is increased carbonate ion concentration of the deep ocean and better preservation of carbonate on the seafloor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Millennial-scale paleoceanographic changes in the Bering Sea during the last 71 kyrs were reconstructed using geochemical and isotope proxies (biogenic opal, CaCO3, and total organic carbon (TOC), nitrogen and carbon isotopes of sedimentary organic matters) and microfossil (radiolaria and foraminifera) data from two cores (PC23A and PC24A) which were collected from the northern continental slope area at intermediate water depths. Biogenic opal and TOC contents were generally high with high sedimentation rates during the last deglaciation. Laminated sediment depositions during the Early-Holocene (EH) and Bølling-Allerød (BA) were closely related with the increased primary productivity recorded by high biogenic opal and TOC contents and high d15N values. Enhanced surface-water productivity was attributed to increased nutrient supply from strengthened Bering Slope Current (BSC) and from increased amount of glacial melt-water, resulting in high C/N ratios and low d13C values, and high proportion of Rhizoplegma boreale during the last deglaciation. In contrast, low surface-water productivity during the last glacial period was due to depleted nutrient supply caused by strong stratification and to restricted phytoplankton bloom by extensive sea ice distribution under cold climates. Extensive formation of sea ice produces more oxygen-rich intermediate-water, leading to oxic bottom-water conditions due to active ventilation, which favored good preservation of oxic benthic foraminifera species. Remarkable CaCO3 peaks coeval with high biogenic opal and TOC contents in both cores during MIS 3 to MIS 4 are most likely correlated with Dansgaard-Oeschger (D-O) events. High d15N and d13Corg values during D-O interstadials support increased surface-water productivity resulting from nutrients supplied mainly by intensified BSC. During the EH, BA and D-O interstadials, dominant benthic foraminifera species indicate dysoxic bottom-water conditions as a result of increased surface-water productivity and weak ventilation of intermediate-water with mitigated sea ice development caused by strengthening of the Alaskan Stream. It is of note that the bottom-water conditions and formation of intermediate-water in the Bering Sea during the last glacial period are related to the variation of dissolved oxygen concentration of the bottom-water in the northeastern Pacific and to strong ventilation of intermediate-water in the northwestern Pacific. Thus, the millennial-scale paleoceanographic events in the Bering Sea during the D-O interstadials are closely associated with the intermediate-water ventilation, ultimately leading to weakening of North Pacific Intermediate Water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late Neogene biostratigraphy of diatoms has been investigated from two sites occupied during Ocean Drilling Program (ODP) Leg 186 off the coast of northeast Japan. A unique aspect of ODP Leg 186 was the installation of two permanent borehole geophysical observatories at the deep-sea terrace along the Japan Trench. The Neogene subsidence history of the forearc was documented from both Sites 1150 and 1151, and Quaternary to middle Miocene (16 Ma) sediments represent a nearly continuous stratigraphic sequence including numerous ash records, especially during the past 9 m.y. Diatoms are found in most samples in variable abundance and in a moderately well preserved state throughout the sequence. The assemblages are characterized consistently by age-diagnostic species of Denticulopsis and Neodenticula found in regions of high surface water productivity typical of middle to high latitudes. The Neogene North Pacific diatom zonation divides the Miocene to Quaternary sequences fundamentally well, except that the latest Miocene through early Pliocene Thalassiosira oestrupii Subzone is not applicable. Miocene and late Pliocene through Pleistocene diatom datum levels that have been proven to be of great stratigraphic utility in the North Pacific Ocean appear to be nearly isochronous within the level of resolution constrained by core catcher sample spacing. The taxonomy and stratigraphy of previously described species determined to be useful across the Miocene/Pliocene boundary have been investigated on the basis of the evolutionary changes within the Thalassiosira trifulta group. The biostratigraphically important forms belonging to the genus Thalassiosira have been illustrated with scanning electron micrographs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the paleoceanographic record of dissolution of calcium carbonate (CaCO3) in the central equatorial Pacific Ocean, we have studied the relationship between three indices of foraminiferal dissolution and the concentration and accumulation of CaCO3, opal, and Corg in Core WEC8803B-GC51 (1.3°N, 133.6°W; 4410 m). This core spans the past 413 kyr of deposition and moved in and out of the lysoclinal transition zone during glacial-interglacial cycles of CaCO3 production and dissolution. The record of dissolution intensity provided by foraminiferal fragmentation, the proportion of benthic foraminifera, and the foraminiferal dissolution index consistently indicates that the past corrosion of pelagic CaCO3 in the central equatorial Pacific does not vary with the observed sedimentary concentration of CaCO3. Although there is a weak low-frequency variation (~100 kyr) in dissolution intensity, it is unrelated to sedimentary CaCO3 concentration. There are many shorter-lived episodes where high CaCO3 concentration is coincident with poor foraminiferal preservation, and where, conversely, low CaCO3 concentration is coincident with superb foraminiferal preservation. Spectral analyses indicate that dissolution maxima consistently lagged glacial maxima (manifest by the SPECMAP delta18O stack) in the 100-kyr orbital band. Additionally, there is no relationship between dissolution and the accumulation of biogenic opal or Corg or between dissolution and the burial ratio of Corg/CINorg (calculated from Corg and CaCO3). Because previous studies of this core strongly suggest that surface water productivity varied closely with CaCO3 accumulation, both the mechanistic decoupling of carbonate dissolution from CaCO3 concentration (and from biogenic accumulation) and the substantial phase shift between dissolution and global glacial periodicity effectively obscure any simple link between export production, CaCO3 concentration, and dissolution of sedimentary CaCO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sites in the Labrador Sea and one site in Baffin Bay were drilled during Leg 105. Radiolarians were recovered at all three sites, although at Site 645 (Baffin Bay), radiolarians were present in useful numbers only in the mudline sample. Radiolarians of late Neogene age were recovered at Site 646 south of Greenland, while early Oligocene and early Miocene radiolarians were recovered from the Labrador Sea at Site 647. In Site 646, radiolarian and other coarse-fraction abundances vary dramatically from sample to sample and may reflect deep-water depositional processes as well as changes in surface-water conditions. Site 647 siliceous microfossils reach their peak abundance and preservation in Core 105-647A-25R and decline gradually upward into the lower Miocene (Cores 105-647A-13R and -14R). Siliceous microfossil abundances in counts of the > 38-µm Carbonate-free coarse fraction from the siliceous interval are correlated to each other, but not to the abundance of nonbiogenic coarse-fraction components. Radiolarian abundances in specimens per gram (but not diatom abundances) are correlated to bulk opal concentration and to the organic carbon content of the sediment. The abundance of radiolarians and other siliceous microfossils within the lower Oligocene to lower Miocene is interpreted as reflecting changes in surface-water productivity. With only a few exceptions, no stratigraphic indicator species were seen in samples from either Site 646 or Site 647. The absence of both tropical/subtropical and Norwegian-Greenland Sea stratigraphic forms is due to the dominance of subarctic North Atlantic taxa in Leg 105 assemblages. The early Oligocene and early Miocene assemblages recovered at Site 647 are of particular interest, as very little material of these ages has previously been recovered from the subarctic North Atlantic region, and virtually no descriptive work has been conducted on the more endemic components of the radiolarian assemblages from these time intervals. Thus, this report concentrates on providing, at least in part, the first comprehensive documentation of early Oligocene and early Miocene radiolarians from the subarctic North Atlantic, with emphasis on basic descriptions, measurements, and photographic documentation. However, synonymic work and formal designation of new species names has been deferred until additional material from other regions can be examined. The sole exception is the emendation of Theocalyptra tetracantha Bjorklund and Kellogg 1972 to Cycladophora tetracantha n. comb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotopic measurements of G. sacculifer and C. wuellerstorfi in a core from the western equatorial Atlantic imply that there are parallel, suborbital oscillations in surface water hydrography and deep water circulation occurring during oxygen isotope stages 2 and 3. Low values of G. sacculifer delta18O accompany high values of C. wuellerstorfi delta13C, linking warmer sea surface temperatures (SSTs) in the tropics with increased production of lower North Atlantic Deep Water (NADW). The amplitude of the delta18O oscillations is 0.6 per mil (or 2°-3°C), which is superimposed on a glacial/interglacial amplitude of about 2.1per mil. Using the G. sacculifer delta18O data, we calculate that surface waters were colder during stage 2 than calculated by CLIMAP [1976, 1981]. The longer-period (>2 kyr) oscillations in air temperature recorded in the Greenland and Antarctic ice cores appear to correlate with oscillations in sea surface temperature in the equatorial Atlantic. The magnitude of these oscillations in tropical SST is too large to have resulted from changes in meridional heat transport caused by the global conveyor alone. The apparent synchroneity of equatorial SST and polar air temperature changes, as well as the amplitude of the SST changes at the equator, are consistent with the climate effects expected from changes in the atmosphere's greenhouse gas content (H2Ovapor, CO2, and CH4).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern Arabian Sea is one of the few regions in the open ocean where thermocline water is severely depleted in oxygen. The intensity of this oxygen minimum zone (OMZ) has been reconstructed over the past 225,000 years using proxies for surface water productivity, water column denitrification, winter mixing, and the aragonite compensation depth (ACD). Changes in OMZ intensity occurred on orbital and suborbital timescales. Lowest O2 levels correlate with productivity maxima and shallow winter mixing. Precession-related productivity maxima lag early summer insolation maxima by ~6 kyr, which we attribute to a prolonged summer monsoon season related to higher insolation at the end of the summer. Periods with a weakened or even non-existent OMZ are characterized by low productivity conditions and deep winter mixing attributed to strong and cold winter monsoonal winds. The timing of deep winter mixing events corresponds with that of periods of climatic cooling in the North Atlantic region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous sapropels and sapropelic strata from Upper Pliocene and Pleistocene hemipelagic sediments of the Tyrrhenian Sea show that intermittent anoxia, possibly related to strongly increased biological productivity, was not restricted to the eastern Mediterranean basins and may be a basin-wide result of Late Pliocene-Pleistocene climatic variability. Even though the sapropel assemblage of the Tyrrhenian Sea clearly originates from multiple processes such as deposition under anoxic conditions or during spikes in surface water productivity and lateral transport of organic-rich suspensates, many "pelagic sapropels" have been recognized. Stratigraphic ages calculated for the organic-rich strata recovered during ODP Leg 107 indicate that the frequency of sapropel formation increased from the lowermost Pleistocene to the base of the Jaramillo magnetic event, coinciding with a period when stable isotope records of planktonic foraminifera indicate the onset of climatic cooling in the Mediterranean. A second, very pronounced peak in sapropel formation occurred in the Middle to Late Pleistocene (0.73-0.26 Ma). Formainifers studied in three high-resolution sample sets suggest that changes in surface-water temperature may have been responsible for establishing anoxic conditions, while salinity differences were not noted in the faunal assemblage. However, comparison of sapropel occurrence at Site 653 with the oxygen isotopic record of planktonic foraminifers established by Thunell et al. (1990, doi:10.2973/odp.proc.sr.107.155.1990) indicates that sapropel occurrences coincide with negative d18O excursions in planktonic foraminifers in thirteen of eighteen sapropels recognized in Hole 653A. A variant of the meltwater hypothesis accepted for sapropel formation in the Late Pleistocene eastern Mediterranean may thus be the cause of several "anoxic events" in the Tyrrhenian as well. Model calculations indicate that the amount of oxygen advection from Western Mediterranean Deep Water exerts the dominant control on the oxygen content in deep water of the Tyrrhenian Sea. Inhibition of deep-water formation in the northern Adriatic and the Balearic Basin by increased meltwater discharge and changing storm patterns during climatic amelioration may thus be responsible for sapropel formation in the Tyrrhenian Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upper Pliocene through Holocene sediments recovered at Site 798 in the Japan Sea (Oki Ridge) exhibit rhythmic variation in weight percent biogenic opal at intervals of ~5 m and periods equivalent to the 41-k.y. obliquity cycle. Variance at 17 and 100 k.y. is observed prior to 1.3 Ma. These cycles are also clearly defined by log data and correspond to clusters of decimeter-scale dark-colored sediment units alternating with clusters of light-colored units. Opal content varies between 3% and 22% between 0 and 1.3 Ma and from 3% to 43% between 1.3 and 2.6 Ma. Long-term opal accumulation rates average 1.8 g/cm**2/k.y. in the late Pliocene/early Pleistocene and decrease by about 60% at ~1.3 Ma. Rough calculations suggest that opal accumulation rates increased and terrigenous flux decreased during the Holocene relative to the last glacial period. Our age control is not yet sufficient to allow a similar analysis of the 41-k.y. cyclicity in opal content throughout the Pleistocene. Stable isotope results from planktonic foraminifers confirm previous suggestions of a strong surface-water freshening event during isotope stage 2; however, this episode appears to be unique during the Pleistocene. Benthic foraminifers are depleted in 18O during parts of glacial stages 2 and 6 relative to adjacent interglacials, suggesting unusual warming and/or freshening of deep waters. Collectively, the stable isotope and %opal data are consistent with continuing isolation of the Japan Sea during the Quaternary with important transitions occurring at 1.3, 0.7 to 1.0, and 0.2 to 0.3 Ma. Complex relationships among the stable isotope results, %opal data, and sediment characteristics such as color and organic and inorganic carbon content preclude development of a simple model to explain cyclical sedimentation. Opal maxima occur within both light and dark intervals and the processes that control surface-water productivity are at times decoupled from the factors that regulate deep-water dysaerobia. We suggest that water column overturn is controlled largely by regional atmospheric circulation that must also have an as yet poorly understood effect on surface-water fertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic geochemical and sedimentological investigations have been performed on sediments from ODP Sites 798 and 799 in order to reconstruct the depositional environment in the Japan Sea through late Cenozoic times. The Miocene to Quaternary sediments from Site 798 (Oki Ridge) and Site 799 (Kita-Yamato Trough) are characterized by high organic carbon contents of up to 6%. The organic matter is mainly a mixture of marine and terrigenous material. The dominant factors controlling marine organic carbon enrichment in the sediments of Hole 798A are probably an increased surface-water productivity and/or an increased preservation rate of organic carbon under anoxic deep-water conditions. In lower Pliocene sediments at Site 798 and Miocene to Quaternary sediments at Site 799, rapid burial of organic matter in turbidites may have been important, too. Remarkable cycles of dark, laminated sediments distinctly enriched in (marine) organic carbon by up to 5% and light, bioturbated to homogeneous sediments with reduced organic carbon contents indicate dramatic short-term paleoenvironmental variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal and regional changes in paleoproductivity and paleoceanography in the eastern Mediterranean Sea during the past 12 kyr were reconstructed on the basis of the stable oxygen and carbon isotope composition of the epibenthic Planulina ariminensis and the shallow endobenthic Uvigerina mediterranea from three sediment cores of the Aegean Sea and Levantine Basin. The Younger Dryas is characterized by high d18O values, indicating enhanced salinities and low temperatures of deep water masses at all investigated sites. With the onset of the Holocene, d18O records show a continuous decrease towards the onset of sapropel S1 formation, mainly caused by a freshening and warming of surface waters at deep water formation sites. In the middle and late Holocene, the similarity of d18O values from the southern Aegean Sea and Levantine Basin suggests the influence of isotopically identical deep water masses. By contrast, slightly higher d18O values are observed the northern Aegean Sea, which probably point to lower temperatures of North Aegean deep waters. The epifaunal d13C records reveal clear changes in sources and residence times of eastern Mediterranean deep waters associated with period of S1 formation. Available data for the early and late phase of sapropel S1 formation and for the interruption around 8.2 kyr display drops by 0.5 and 1.5 per mil, indicating the slow-down of deep water circulation and enhanced riverine input of isotopically light dissolved inorganic carbon from terrestrial sources into the eastern Mediterranean Sea. The decrease in epifaunal d13C signals is particularly expressed in the southern Aegean Sea and Levantine Basin, while it is less pronounced in the northern Aegean Sea. This points to a strong reduction in deep water exchange rates in the southern areas, but the persistence of local deep water formation in the northern Aegean Sea. The d13C values of U. mediterranea records reveal temporal and regional differences in paleoproductivity during the past 12 kyr, with rather eutrophic and mesotrophic conditions in the North Aegean Sea and southeast Levantine Basin, respectively, while the South Aegean Sea is characterized by rather oligotrophic conditions. After S1 formation, increasing d13C values reflect a progressive decrease in surface water productivity in the eastern Mediterranean Sea during the middle and late Holocene. In the northern Aegean Sea, this time interval is marked by repetitive changes in organic matter fluxes documented by significant fluctuations in the d13C signal of U. mediterranea on millennial- to multi-centennial time scales. These fluctuations can be linked to short-term changes in river runoff driven by northern hemisphere climatic variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nearly continuous cores of Quaternary fine-grained sediments with distinct dark-light colored cycles were recovered from Sites 794, 795, and 797 in the basinal parts of the Japan Sea during Leg 127. A comparison of gray value (darkness) profiles supplemented by visual inspection of core photographs between sites indicated that most of the dark and light layers were correlatable between sites, and that two of the dark layers lie close to adjacent marker ash layers. These observations indicate that deposition of dark and light layers resulted from basin-wide synchronous events. In order to understand the origin of these dark-light cycles, petrographical, mineralogical, compositional, and paleontological studies were carried out on closely spaced samples from the upper Quaternary sediments recovered from Site 797. Age model was constructed based on comparison between variation in diatom abundance and the standard oxygen isotope curve of Imbrie et al. (1984), the latter was interpolated between the five age controlled levels established at Site 797. The two curves show similar patterns which enabled us to "tune" the sediment ages to the oxygen isotope stages. We have to use variation in diatom abundance as a substitute for oxygen isotope curve since oxygen isotopic data are not available at the studied sites. Bottom water oxygenation conditions were estimated based on two criteria: (1) the degree of lamina preservation and (2) the ratio of Corg to Stot. The surface water productivity was deduced from the Corg and biogenic silica content. Results suggest that the bottom water oxygenation level and the surface water productivity varied significantly in response to the glacial-interglacial cycles. Glacio-eustatic sea-level changes and subsequent changes in water circulation in the Japan Sea appear to have been responsible for these variations and consequent changes in sediment composition throughout the Quaternary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparison of calcareous dinoflagellate cyst assemblages with Ba, Al, Mn, and Fe records from three sediment cores collected in the eastern Mediterranean Sea indicate that calcareous dinoflagellate cysts are generally resistant to postdepositional dissolution. Cyst association changes during and after sapropel S1 formation can therefore be closely related to variability in surface water productivity. Two groups of cysts are defined: those having highest abundances within the sapropelic and postsapropelic sediments. The temporal cyst distributions suggest increased freshwater input mainly from the Nile and a shallowing of the pycnocline as the most important processes increasing nutrient concentration in the photic zone, thus leading to increased productivity and organic carbon fluxes during sapropel formation. Furthermore, a general warming trend at the beginning of S1 formation and a slight salinity decrease are reconstructed.