121 resultados para electron probe analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

To examine the processes and histories of arc volcanism and of volcanism associated with backarc rifting. 130 samples containing igneous glass shards were taken from the Plioccne-Quatemai^ succession on the rift Hank (Site 788) and the Quaternary fill in the basin fill of the Sumisu Rift (Sites 790 and 791). These samples were subsequently analyzed at the University of Illinois at Chicago and Shizuoka University. The oxides determined by electron probe do not account for the total weight of the material; differences between summed oxides and 100% arise from the water contents, probably augmented by minor losses thai result from alkali vaporization during analysis. Weight losses in colorless glasses are up to 9%; those in brown glasses (dacitcs to basalts) arc no more than 4.5%; shards from the rift-flank (possibly caused by prolonged proximity to ihc scafloor) generally have higher values than those from the rift-basin fill How much of the lost water is magmatic, and how much is hydrated is uncertain; however, although the shards absorb potassium, calcium, and magnesium during hydration in the deep sea, they do so only to a minor extent that does not significantly alter their major element compositions. Therefore, the electron-probe results are useful in evaluating the magmatism recorded by the shards. Pre- and syn-rift Izu-Bonin volcanism were overwhelmingly dominated by rhyolile explosions, demonstrating that island arcs may experience significant silicic volcanism in addition to the extensive basaltic and basaltic andestic activity, documented in many arcs since the 1970s, that occurs in conjunction with the andesitic volcanism formerly thought to be dominant. Andesitic eruptions also occurred before rifting, but the andesitic component in our samples is minor. All the pre- and syn-rift rhyolites and andesites belong to the low-alkali island-arc tholeiitic suite, and contrast markedly with the alkali products of Holocene volcanism on the northernmost Mariana Arc that have been attributed to nascent rifting. The Quaternary dacites and andesites atop the rift flank and in the rift-basin fill are more potassic than those of Pliocene age, as a result of assimilation from the upper arc crust, or from variations in degrees of partial melting of the source magmas, or from metasomatic fluids. All the glass layers from the rift-flank samples belong to low-K arc-tholeiitic suites. Half of those in the Pliocene succession are exclusively rhyolitic: the others contain minor admixtures of dacite and andesite, or andesite and either basaltic andesite or basalt. In Contrast, the Quaternary (syn-rift) volcaniclastics atop the rift-flank lack basalt and basaltic andesite shards. These youngest sediments of the rift flank show close compositional affinities with five thick layers of coarse, rhyolitic pumice deposits in the basin fill, the two oldest more silicic than the younger ones. The coarse layers, and most thin ash layers that occur in hemipelagites below and intercalated between them, are low-K rhyolites and therefore probably came from sources in the arc. However, several thin rhyolitic ash beds in the hemipelagites are abnormally enriched in potassium and must have been provided by more distal sources, most likely to the west in Japan. Remarkably, the Pliocene-Pleistocene geochemistry of the volcanic front does not appear to have been influenced by the syn-rift basaltic volcanism only a few kilometers away. Rare, thin layers of basaltic ash near the bases of the rift-basin successions are not derived from the arc. They deviate strongly from trends that the arc-derived glasses display on oxide-oxide plots, and show close affinities to the basalts empted all over the Sumisu Rift during rifting. These basalts, and the basaltic ashes in the basal rift-basin fill, arc compositionally similar to those erupted from mature backarc basins elsewhere.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deep sea manganese nodules from the Southern Ocean have been studied using chemical analysis, X-ray diffraction, optical mineragraphic and electron probe microanalysis techniques. The nodules were lower in manganese, iron and associated elements than the average grade of manganese nodules from other localities. A number of chemical relationships have been observed. Nickel, copper, cobalt, barium, zinc, molybdenum, strontium, sulphur and phosphorus are associated with the manganese rich phases and titanium with the iron rich phases. X-ray diffraction analysis and electron probe microanalysis results indicate that the manganese phases are similar to the disordered delta-MnO2 and "manganite" phases reported by other workers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Major element geochemical composition was established for 59 tephra horizons from Ocean Drilling Program Sites 1150 and 1151, located in the Japan forearc. These data, encompassing typically between 15 and 30 individual shard analyses per tephra horizon, were used to investigate the degree to which sediment reworking, postdepositional geochemical alteration, and geochemical uniqueness of individual eruptives facilitate or impede the potential for establishing a tephrostratigraphical framework for the Japan Trench, as well as usage of the tephra record to document arc evolution. Evidence was found that hydration (termed phase 1 alteration) of glass shards increases with age in the Pliocene-Pleistocene, but there is no indication that element leaching (phase 2 alteration) has occurred. Post- or syn-depositional differences in preservational style are shown to have no significant bearing on tephrogeochemical homogeneity and suitability for tephrostratigraphical analysis. Overall, therefore, the volcaniclastic record is suitable for investigating medium- to long-term changes in arc geochemistry and, provided consideration is given to the potential for nonunique geochemical signatures, is suitable for erecting tephrochronological frameworks. A limited number of Pleistocene tephra correlations are suggested in furtherance of this framework goal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The process of fluid release from the subducting slab beneath the Izu arc volcanic front (Izu VF) was examined by measuring B concentrations and B isotope ratios in the Neogene fallout tephra (ODP Site 782A). Both were measured by secondary ion mass spectrometry, in a subset of matrix glasses and glassy plagioclase-hosted melt inclusions selected from material previously analyzed for major and trace elements (glasses) and radiogenic isotopes (Sr, Nd, Pb; bulk tephra). These tephra glasses have high B abundances (~10-60 ppm) and heavy delta11B values (+4.5? to +12.0?), extending the previously reported range for Izu VF rocks (delta11B, +7.0? to +7.3?). The glasses show striking negative correlations of delta11B with large ion lithophile element (LILE)/Nb ratios. These correlations cannot be explained by mixing two separate slab fluids, originating from the subducting sediment and the subducting basaltic crust, respectively (model A). Two alternative models (models B and C) are proposed. Model B proposes that the inverse correlations are inherited from altered oceanic crust (AOC), which shows a systematic decrease of B and LILE with increasing depth (from basaltic layer 2A to layer 3), paralleled by an increase in delta11B (from ~ +1? to +10? to +24?). In this model, the contribution of sedimentary B is insignificant (<4% of B in the Izu VF rocks). Model C explains the correlation as a mixture of a low-delta11B (~ +1?) 'composite' slab fluid (a mixture of metasediment- and metabasalt-derived fluids) with a metasomatized mantle wedge containing elevated B (~1-2 ppm) and heavy delta11B (~ +14?). The mantle wedge was likely metasomatized by 11B-rich fluids beneath the outer forearc, and subsequently down dragged to arc front depths by the descending slab. Pb-B isotope systematics indicate that, at arc front depths, ~ 53% of the B in the Izu VF is derived from the wedge. This implies that the heavy delta11B values of Izu VF rocks are largely a result of fluid fractionation, and do not reflect variations in slab source provenance (i.e. subducting sediment vs. basaltic crust). Since the B content of the peridotite at the outer forearc (7-58 ppm B, mean 24 +/- 16 ppm) is much higher than beneath the arc front (~1-2 ppm B), the hydrated mantle wedge must have released a B-rich fluid on its downward path. This 'wedge flux' can explain (1) the across-arc decrease in B and delta11B (e.g. Izu, Kuriles), without requiring a progressive decrease in fluid flux from the subducting slab, and (2) the thermal structure of volcanic arcs, as reflected in the B and delta11B variations of volcanic arc rocks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Major and trace element profiles of clinopyroxene grains in oceanic gabbros from ODP Hole 735B have been investigated by a combined in situ analytical study with ion probe, and electron microprobe. In contrast to the homogeneous major element compositions, trace elements (REE, Y, Cr, Sr, and Zr) show continuous core to rim zoning profiles. The observed trace element systematics in clinopyroxene cannot be explained by a simple diffusive exchange between melts and gabbros along grain boundaries. A simultaneous modification of the melt composition is required to generate the zoning, although Rayleigh fractional crystallization modelling could mimic the general shape of the profiles. Simultaneous metasomatism between the cumulate crystal and the porous melt during crystal accumulation is the most likely process to explain the zoning. Deformation during solidification of the crystal mush could have caused squeezing out of the incompatible element enriched residual melts (interstitial liquid). Migration of the melt along grain boundaries might carry these melt out of the system. This process named as synkinematic differentiation or differentiation by deformation (Natland and Dick, 2001, doi:10.1016/S0377-0273(01)00211-6) may act as an important magma evolution mechanism in the oceanic crust, at least at slow-spreading ridges.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We extended the petrographic and geochemical dataset for the recently discovered Transantarctic Mountain microtektites in order to check our previous claim that they are related to the Australasian strewn field. Based on color and composition, the 465 microtektites so far identified include two groups of transparent glass spheres less than ca. 800 µm in diameter: the most abundant pale-yellow, or normal, microtektites, and the rare pale-green, or high-Mg, microtektites. The major element composition of normal microtektites determined through electron microprobe analysis is characterized by high contents of silica (SiO2 = 71.5 ± 3.6 (1 sigma) wt%) and alumina (Al2O3 = 15.5 ± 2.2 (1 sigma) wt%), low total alkali element contents (0.50-1.85 wt%), and MgO abundances <6 wt%. The high-Mg microtektites have a distinctly higher MgO content >10 wt%. Transantarctic Mountain microtektites contain rare silica-rich (up to 93 wt% SiO2) glassy inclusions similar to those found in two Australasian microtektites analyzed here for comparison. These inclusions are interpreted as partially digested, lechatelierite-like inclusions typically found in tektites and microtektites. The major and trace element (by laser ablation - inductively coupled plasma - mass spectrometry) abundance pattern of the Transantarctic Mountain microtektites matches the average upper continental crust composition for most elements. Major deviations include a strong to moderate depletion in volatile elements including Pb, Zn, Na, K, Rb, Sr and Cs, as a likely result of severe volatile loss during the high temperature melting and vaporization of crustal target rocks. The normal and high-Mg Transantarctic Mountain microtektites have compositions similar to the most volatile-poor normal and high-Mg Australasian microtektites reported in the literature. Their very low H2O and B contents (by secondary ion mass spectrometry) of 85 ± 58 (1 sigma) ?g/g and 0.53 ± 0.21 ?g/g, respectively, evidence the extreme volatile loss characteristically observed in tektites. The Sr and Nd isotopic compositions of multigrain samples of Transantarctic Mountain microtektites are 87Sr/86Sr ~ 0.71629 and 143Nd/144Nd ~ 0.51209, and fall into the Australasian tektite compositional field. The Nd model age calculated with respect to the chondritic uniform reservoir (CHUR) is TNdCHUR ~ 1.1 Ga, indicating a Meso-Proterozoic crustal source rock, as was derived for Australasian tektites as well. Coupled with the Quaternary age from the literature, the extended dataset presented in this work strengthens our previous conclusion that Transantarctic Mountain microtektites represent a major southward extension of the Australasian tektite/microtektite strewn field. Furthermore, the significant depletion in volatile elements (i.e., Pb, B, Na, K, Zn, Rb, Sr and Cs) of both normal and high-Mg Transantarctic Mountain microtektites relative to the Australasian ones provide us with further confirmation of a possible relationship between high temperature-time regimes in the microtektite-forming process and ejection distance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper presents data on naturally quenched melt inclusions in olivine (Fo 69-84) from Late Pleistocene pyroclastic rocks of Zhupanovsky volcano in the frontal zone of the Eastern Volcanic Belt of Kamchatka. The composition of the melt inclusions provides insight into the latest crystallization stages (~70% crystallization) of the parental melt (~46.4 wt % SiO2, ~2.5 wt % H2O, ~0.3 wt % S), which proceeded at decompression and started at a depth of approximately 10 km from the surface. The crystallization temperature was estimated at 1100 ± 20°C at an oxygen fugacity of deltaFMQ = 0.9-1.7. The melts evolved due to the simultaneous crystallization of olivine, plagioclase, pyroxene, chromite, and magnetite (Ol: Pl: Cpx : (Crt-Mt) ~ 13 : 54 : 24 : 4) along the tholeiite evolutionary trend and became progressively enriched in FeO, SiO2, Na2O, and K2O and depleted in MgO, CaO, and Al2O3. Melt crystallization was associated with the segregation of fluid rich in S-bearing compounds and, to a lesser extent, in H2O and Cl. The primary melt of Zhupanovsky volcano (whose composition was estimated from data on the most primitive melt inclusions) had a composition of low-Si (~45 wt % SiO2) picrobasalt (~14 wt % MgO), as is typical of parental melts in Kamchatka and other island arcs, and was different from MORB. This primary melt could be derived by ~8% melting of mantle peridotite of composition close to the MORB source, under pressures of 1.5 ± 0.2 GPa and temperatures 20-30°C lower than the solidus temperature of 'dry' peridotite (1230-1240°C). Melting was induced by the interaction of the hot peridotite with a hydrous component that was brought to the mantle from the subducted slab and was also responsible for the enrichment of the Zhupanovsky magmas in LREE, LILE, B, Cl, Th, U, and Pb. The hydrous component in the magma source of Zhupanovsky volcano was produced by the partial slab melting under water-saturated conditions at temperatures of 760-810°C and pressures of ~3.5 GPa. As the depth of the subducted slab beneath Kamchatkan volcanoes varies from 100 to 125 km, the composition of the hydrous component drastically changes from relatively low-temperature H2O-rich fluid to higher temperature H2O-bearing melt. The geothermal gradient at the surface of the slab within the depth range of 100-125 km beneath Kamchatka was estimated at 4°C/km.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Southern Ocean is a region of the world's ocean which is fundamental to the generation of cold deep ocean water which drives the global therrno-haline circulation. Previous investigations of deep-sea sediments south of the Polar Front have been significantly constrained by the lack of a suitable correlation and dating technique. In this study, deep-sea sediment cores from the Bellingshausen, Scotia and Weddell seas have been investigated for the presence of tephra layers. The major oxide and trace element composition of glass shards have been used to correlate tephra isochrons over distances in excess of 600 km. The source volcanoes for individual tephra layers have been identified. Atmospheric transport distances greater than 1500 km for >32 pm shards are reported. One megascopic tephra is identified and correlated across 7 sediment drifts on the continental rise in the Bellingshausen Sea. Its occurrence in a sedimentary unit that has been biostratigraphically dated to delta 18O substage 5e identifies it as a key regional marker horizon for that stage. An unusual bimodal megascopic ash layer erupted from Deception Island, South Shetland Islands, has been correlated between 6 sediment cores which form a 600 km NE-SW transect from the central Scotia Sea to Jane Basin. This megascopic ash layer has been 14C dated at c. 10,670 years BP. It represents the last significant input of tephra into the Scotia Sea or Jane Basin from that volcano and forms an important early Holocene marker horizon for the region. Five disseminated tephras can be correlated to varying extents across the central Scotia Sea cores. Together with the megascopic tephra they form a tephrostratigraphic framework that will greatly aid palaeoclimatic, palaeoenvironrnental and palaeoceanographic investigations in the region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the Paleocene-Eocene Thermal Maximum (PETM), rapid release of isotopically light C to the ocean-atmosphere system elevated the greenhouse effect and warmed temperatures by 5-7 °C for 105 yr. The response of the planktic ecosystems and productivity to the dramatic climate changes of the PETM may represent a significant feedback to the carbon cycle changes, but has been difficult to document. We examine Sr/Ca ratios in calcareous nannofossils in sediments spanning the PETM in three open ocean sites as a new approach to examine productivity and ecological shifts in calcifying plankton. The large heterogeneity in Sr/Ca among different nannofossil genera indicates that nannofossil Sr/Ca reflects primary productivity-driven geochemical signals and not diagenetic overprinting. Elevated Sr/Ca ratios in several genera and constant ratios in other genera suggest increased overall productivity in the Atlantic sector of the Southern Ocean during the PETM. Dominant nannofossil genera in tropical Atlantic and Pacific sites show Sr/Ca variations during the PETM which are comparable to background variability prior to the PETM. Despite acidification of the ocean there was not a productivity crisis among calcifying phytoplankton. We use the Pandora ocean box model to explore possible mechanisms for PETM productivity change. If independent proxy evidence for more stratified conditions in the Southern Ocean during the PETM is robust, then maintenance of stable or increased productivity there likely reflects increased nutrient inventories of the ocean. Increased nutrient inventories could have resulted from climatically enhanced weathering and would have important implications for burial rates of organic carbon and stabilization of climate and the carbon cycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In-situ Fe isotope measurements have been carried out to estimate the impact of the hydrothermal metamorphic overprint on the Fe isotopic composition of Fe-Ti-oxides and Fe-sulfides of the different lithologies of the drilled rocks from IODP Hole 1256D (eastern equatorial Pacific; 15 Ma crust formed at the East Pacific Rise). Most igneous rocks normally have a very restricted range in their 56Fe/54Fe ratio. In contrast, Fe isotope compositions of hot fluids (> 300 °C) from mid-ocean-ridge spreading centers define a narrow range that is shifted to lower delta 56Fe values by 0.2 per mil - 0.5 per mil as compared to igneous rocks. Therefore, it is expected that mineral phases that contain large amounts of Fe are especially affected by the interaction with a fluid that fractionates Fe isotopes during exsolution/precipitation of those minerals. We have used a femtosecond UV-Laser ablation system to determine mineral 56Fe/54Fe ratios of selected samples with a precision of < 0.1 per mil (2 sigma level) at micrometer-scale. We have found significant variations of the delta 56Fe (IRMM-014) values in the minerals between different samples as well as within samples and mineral grains. The overall observed scale of delta 56Fe (magnetite) in 1256D rocks ranges from - 0.12 to + 0.64 per mil, and of delta 56Fe (ilmenite) from - 0.77 to + 0.01 per mil. Pyrite in the lowermost sheeted dike section is clearly distinguishable from the other investigated lithological units, having positive delta 56Fe values between + 0.29 and + 0.56 per mil, whereas pyrite in the other samples has generally negative delta 56Fe values from - 1.10 to - 0.59 permil. One key observation is that the temperature dependent inter-mineral fractionations of Fe isotopes between magnetite and ilmenite are systematically shifted towards higher values when compared to theoretically expected values, while synthesized, well equilibrated magnetite-ilmenite pairs are compatible with the theoretical predictions. Theoretical considerations including beta-factors of different aqueous Fe-chlorides and Rayleigh-type fractionations in the presence of a hydrous, chlorine-bearing fluid can explain this observation. The disagreement between observed and theoretical equilibrium fractionation, the fact that magnetite, in contrast to ilmenite shows a slight downhole trend in the delta 56Fe values, and the observation of small scale heterogeneities within single mineral grains imply that a general re-equilibration of the magnetite-ilmenite pairs is overprinted by kinetic fractionation effects, caused by the interaction of magnetite/ilmenite with hydrothermal fluids penetrating the upper oceanic crust during cooling, or incomplete re-equilibration at low temperatures. Furthermore, the observation of significant small-scale variations in the 56Fe/54Fe ratios of single minerals in this study highlights the importance of high spatial-resolution-analyses of stable isotope ratios for further investigations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since studies on deep-sea cores were carried out in the early 1990s it has been known that ambient temperature may have a marked affect on apatite fission track annealing. Due to sluggish annealing kinetics, this effect cannot be quantified by laboratory annealing experiments. The unknown amount of low-temperature annealing remains one of the main uncertainties for extracting thermal histories from fission track data, particularly for samples which experienced slow cooling in shallow crustal levels. To further elucidate these uncertainties, we studied volcanogenic sediments from five deep-sea drill cores, that were exposed to maximum temperatures between ~10° and 70°C over geological time scales of ~15-120 Ma. Mean track lengths (MTL) and etch pit diameters (Dpar) of all samples were measured, and the chemical composition of each grain analyzed for age and track length measurements was determined by electron microprobe analysis. Thermal histories of the sampled sites were independently reconstructed, based on vitrinite reflectance measurements and/or 1D numerical modelling. These reconstructions were used to test the most widely used annealing models for their ability to predict low-temperature annealing. Our results show that long-term exposure to temperatures below the temperature range of the nominal apatite fission track partial annealing zone results in track shortening ranging between 4 and 11%. Both chlorine content and Dpar values explain the downhole annealing patterns equally well. Low chlorine apatite from one drill core revealed a systematic relation between Si-content and Dpar value. The question whether Si-substitution in apatite has direct and systematic effects on annealing properties however, cannot be addressed by our data. For samples, which remained at temperatures <30°C, and which are low in chlorine, the Laslett et al. [Laslett G., Green P., Duddy I. and Gleadow A. (1987) Thermal annealing of fission tracks in apatite. Chem. Geol. 65, 1-13] annealing model predicts MTL up to 0.6 µm longer than those actually measured, whereas for apatites with intermediate to high chlorine content, which experienced temperatures >30°C, the predictions of the Laslett et al. (1987) model agree with the measured MTL data within error levels. With few exceptions, predictions by the Ketcham et al. [Ketcham R., Donelick R. and Carlson W. (1999) Variability of apatite fission-track annealing kinetics. III: Extrapolation to geological time scales. Am. Mineral. 84/9, 1235-1255] annealing model are consistent with the measured data for samples which remained at temperatures below ~30°C. For samples which experienced maximum temperatures between ~30 and 70°C, and which are rich in chlorine, the Ketcham et al. (1999) model overestimates track annealing.