26 resultados para content method
Resumo:
An orbital floating time scale of the Hauterivian-Barremian transition (Early Cretaceous) is proposed using high-resolution magnetic susceptibility measurements. Orbital tuning was performed on the Río Argos section (southeast Spain), the candidate for a Global boundary Stratotype Section and Point (GSSP) for the Hauterivian-Barremian transition. Spectral analyses of MS variations, coupled with the frequency ratio method, allow the recognition of precession, obliquity and eccentricity frequency bands. Orbitally-tuned magnetic susceptibility provides minimum durations for ammonite biozones. The durations of well-constrained ammonite zones are assessed at 0.78 myr for Pseudothurmannia ohmi (Late Hauterivian) and 0.57 myr for Taveraidiscus hugii (Early Barremian). These results are consistent with previous estimates from the other reference section (Angles, southeast France) and tend to show that the Río Argos section displays a complete succession for this time interval. They differ significantly from those proposed in the Geologic Time Scale 2008 and may help to improve the next compilation. The Faraoni Oceanic Anoxic Event, a key Early Cretaceous oceanographic perturbation occurring at the P. ohmi/P. catulloi subzone boundary has a duration estimated at 0.10-0.15 myr, which is similar to previous assessments.
Resumo:
Site 996 is located above the Blake Diapir where numerous indications of vertical fluid migration and the presence of hydrate existed prior to Ocean Drilling Program (ODP) Leg 164. Direct sampling of hydrates and visual observations of hydrate-filled veins that could be traced 30-40 cm along cores suggest a connection between fluid migration and hydrate formation. The composition of pore water squeezed from sediment cores showed large variations due to melting of hydrate during core recovery and influence of saline water from the evaporitic diapir below. Analysis of water released during hydrate decomposition experiments showed that the recovered hydrates contained significant amounts of pore water. Solutions of the transport equations for deuterium (d2H) and chloride (Cl-) were used to determine maximum (d2H) and minimum (Cl-) in situ concentrations of these species. Minimum in situ concentrations of hydrate were estimated by combining these results with Cl- and d2H values measured on hydrate meltwaters and pore waters obtained by squeezing of sediments, by the means of a method based on analysis of distances in the two-dimensional Cl- d2H space. The computed Cl- and d2H distribution indicates that the minimum hydrate amount solutions are representative of the actual hydrate amount. The highest and mean hydrate concentrations estimates from our model are 31% and 10% of the pore space, respectively. These concentrations agree well with visual core observations, supporting the validity of the model assumptions. The minimum in situ Cl- concentrations were used to constrain the rates of upward fluid migration. Simulation of all available data gave a mean flow rate of 0.35 m/k.y. (range: 0.125-0.5 m/k.y.).
Resumo:
Deep sea manganese nodules are considered as important natural resources for the future because of their Ni, Cu and Co contents. Their different shapes cannot be correlated clearly with their chemical composition. Surface constitution, however, can be associated with the metal contents. A classification of the nodules is suggested on the basis of these results. The iron content of the nodules strikingly shows relations to the physical properties (e.g. density and porosity). The method of density-measurement is the reason for this covariance. The investigation of freeze-dried nodular substance does not give this result. The Fe-rich nodules lose more hydration water than the Fe-poor ones during heat drying. The reason for this effect is the different crystallinity, respectively the particle size. The mean particle size is calculated on the basis of geometrical models. The X-ray-diffraction analysis proves the variation of crystallinity in connection with the Fe-content, too. The internal nodular textures also show characteristic distinctions.
Resumo:
Dissolved organic matter (DOM) was isolated with XAD-2 and 4 resins from different water masses of the Greenland Sea and Fram Strait. The contribution of XAD-extractable dissolved organic carbon (DOC), operationally defined as 'recalcitrant' or humic substances, to total DOC was in the range of 45 ± 9% in surface waters and 60 ± 6% in deep waters. The carbohydrate concentration and composition were determined using the l-tryptophan/sulfuric acid method (for the bulk carbohydrate concentration, TCHO) and high performance anion-exchange chromatography after sulfuric acid hydrolysis (for the distribution of total hydrolysable neutral sugars, THNS). Carbohydrates contributed up to 6.8% to both total and recalcitrant DOC. TCHO contribution to total DOC decreased with depth from on average 4.1 ± 1.2% in surface waters to 2.2 ± 1.0% in deep waters, whereas the THNS contribution was similar in both layers, accounting for 2.5 ± 1.6% (surface) and 2.4 ± 0.2% (at depth). TCHO contribution to XAD-extractable DOC also decreased with depth from 4.5 ± 1.7% to 2.1 ± 1.0%, whereas THNS contribution was almost constant, with yields of 0.5 ± 0.3% for surface samples and 0.6 ± 0.1% at depth. The molecular size distribution of the recalcitrant DOM showed for all fractions a clear trend towards small molecules in the deep sea. More than half of the XAD-extractable carbohydrates of surface samples and more than 70% of deep sea samples were found in the nonpolar fraction from XAD, which was eluted with methanol. Glucose was the dominant carbohydrate in the surface water samples, whereas in the deep sea the composition was more uniform. In the XAD extracts, the compositions were less variable than in the original samples. The neutral sugar composition, in particular glucose and the deoxysugars, is indicative of the diagenetic state of the extracted DOM. The molar ratio (fucose + rhamnose)/(arabinose + xylose) was lowest for deep sea extractable DOM, indicating a high contribution of material modified by microorganisms. The THNS composition and distribution reveal that "recalcitrant" carbohydrates are heteropolysaccharides, carbohydrate units incorporated into a framework of a highly nonpolar structure with a lack of functional groups.
Resumo:
This datafile presents chemical and physical as well as age dating information from the Store Mosse peat bog in southern Sweden. This record dates back to 8900 cal yr BP. The aim of the research was to reconstruct mineral dust deposition over time. As such we have only presented the lithogenic element data (Al, Ga, Rb, Sc, Ti, Y, Zr, Th and the REE) as the sample preparation method was tailored to these. This data is supported by parameters describing the deposit including bulk density, humification, ash content and net peat accumulation rates.