23 resultados para complex nonlinear least squares
Resumo:
We studied the relationship between flower size and nectar properties of hummingbird-visited flowers in the Brazilian Atlantic Forest. We analysed the nectar volume and concentration as a function of corolla length and the average bill size of visitors for 150 plant species, using the phylogenetic generalized least squares (PGLS) to control for phylogenetic signals in the data. We found that nectar volume is positively correlated with corolla length due to phylogenetic allometry. We also demonstrated that larger flowers provide better rewards for long-billed hummingbirds. Regardless of the causal mechanisms, our results support the hypothesis that morphological floral traits that drive partitioning among hummingbirds correspond to the quantity of resources produced by the flowers in the Atlantic Forest. We demonstrate that the relationship between nectar properties and flower size is affected by phylogenetic constraints and thus future studies assessing the interaction between floral traits need to control for phylogenetic signals in the data.
Resumo:
I developed a new model for estimating annual production-to-biomass ratio P/B and production P of macrobenthic populations in marine and freshwater habitats. Self-learning artificial neural networks (ANN) were used to model the relationships between P/B and twenty easy-to-measure abiotic and biotic parameters in 1252 data sets of population production. Based on log-transformed data, the final predictive model estimates log(P/B) with reasonable accuracy and precision (r2 = 0.801; residual mean square RMS = 0.083). Body mass and water temperature contributed most to the explanatory power of the model. However, as with all least squares models using nonlinearly transformed data, back-transformation to natural scale introduces a bias in the model predictions, i.e., an underestimation of P/B (and P). When estimating production of assemblages of populations by adding up population estimates, accuracy decreases but precision increases with the number of populations in the assemblage.
Resumo:
Vertical permeability and sediment consolidation measurements were taken on seven whole-round drill cores from Sites 1253 (three samples), 1254 (one sample), and 1255 (three samples) drilled during Ocean Drilling Program Leg 205 in the Middle America Trench off of Costa Rica's Pacific Coast. Consolidation behavior including slopes of elastic rebound and virgin compression curves (Cc) was measured by constant rate of strain tests. Permeabilities were determined from flow-through experiments during stepped-load tests and by using coefficient of consolidation (Cv) values continuously while loading. Consolidation curves and the Casagrande method were used to determine maximum preconsolidation stress. Elastic slopes of consolidation curves ranged from 0.097 to 0.158 in pelagic sediments and 0.0075 to 0.018 in hemipelagic sediments. Cc values ranged from 1.225 to 1.427 for pelagic carbonates and 0.504 to 0.826 for hemipelagic clay-rich sediments. In samples consolidated to an axial stress of ~20 MPa, permeabilities determined by flow-through experiments ranged from a low value of 7.66 x 10**-20 m**2 in hemipelagic sediments to a maximum value of 1.03 x 10**-16 m**2 in pelagic sediments. Permeabilities calculated from Cv values in the hemipelagic sediments ranged from 4.81 x 10**-16 to 7.66 x 10**-20 m**2 for porosities 49.9%-26.1%.
Resumo:
This dataset contains the result of a joint least squares inversion of GRACE and altimetry data. The results are evaluated in terms of sea level change for the global ocean as well as dedicated areas. In addition, some auxiliary data is provided to enable reproducibility of the results in Rietbroek et al. 2016, and a google Earth kmz file is provided which visualizes the trends derived from the inversion results.
Resumo:
Detailed information about the sediment properties and microstructure can be provided through the analysis of digital ultrasonic P wave seismograms recorded automatically during full waveform core logging. The physical parameter which predominantly affects the elastic wave propagation in water-saturated sediments is the P wave attenuation coefficient. The related sedimentological parameter is the grain size distribution. A set of high-resolution ultrasonic transmission seismograms (-50-500 kHz), which indicate downcore variations in the grain size by their signal shape and frequency content, are presented. Layers of coarse-grained foraminiferal ooze can be identified by highly attenuated P waves, whereas almost unattenuated waves are recorded in fine-grained areas of nannofossil ooze. Color -encoded pixel graphics of the seismograms and instantaneous frequencies present full waveform images of the lithology and attenuation. A modified spectral difference method is introduced to determine the attenuation coefficient and its power law a = kF. Applied to synthetic seismograms derived using a "constant Q" model, even low attenuation coefficients can be quantified. A downcore analysis gives an attenuation log which ranges from -700 dB/m at 400 kHz and a power of n=1-2 in coarse-grained sands to few decibels per meter and n :s; 0.5 in fine-grained clays. A least squares fit of a second degree polynomial describes the mutual relationship between the mean grain size and the attenuation coefficient. When it is used to predict the mean grain size, an almost perfect coincidence with the values derived from sedimentological measurements is achieved.
Resumo:
Maximum entropy spectral analyses and a fitting test to find the best suitable curve for the modified time series based on the non-linear least squares method for Td (diatom temperature) values were performed for the Quaternary portion of the DSDP Sites 579 and 580 in the western North Pacific. The sampling interval averages 13.7 kyr in the Brunhes Chron (0-780 ka) and 16.5 kyr in the later portion of the Matuyama Chron (780-1800 ka) at Site 580, but increases to 17.3 kyr and 23.2 kyr, respectively, at Site 579. Among dominant cycles during the Brunhes Chron, there are 411.5 kyr and 126.0 kyr at Site 579, and 467.0 kyr and 136.7 kyr at Site 580 correspond to 413 kyr and 95 to 124 kyr of the orbital eccentricity. Minor cycles of 41.2 kyr at Site 579 and 41.7 kyr at Site 580 are near to 41 kyr of the obliquity (tilt). During the Matuyama Chron at Site 580, cycles of 49.7 kyr and 43.6 kyr are dominant. The surface-water temperature estimated from diatoms at the western North Pacific DSDP Sites 579 and 580 shows correlation with the fundamental Earth's orbital parameters during Quaternary time.