27 resultados para coastal erosion
Resumo:
Data on the amount and composition of organic carbon were determined in sediment cores from the Kara and Laptev Sea continental margin, representing oxygen isotope stages 1-6. The characterization of organic matter is based on hydrogen index (HI) values, n-alkanes and maceral composition, indicating the predominance of terrigenous organic matter through space and time. The variations in the amount and composition of organic carbon are mainly influenced by changes in fluvial sediment supply, Atlantic water inflow, and continental ice sheets. During oxygen isotope stage (OIS) 6, high organic carbon contents in sediments from the Laptev Sea and western East Siberian Sea continental margin were probably caused by the increased glacial erosion and further transport in the eastward-flowing boundary current along the continental margin. During OIS 5 and early OIS 3, some increased amounts of marine organic matter were preserved in sediments east of the Lomonosov Ridge, suggesting an influence of nutrient-rich Pacific waters. During OIS 2, terrigenous organic carbon supply was increased along the Barents and western Kara Sea continental margin caused by extended continental ice sheets in the Barents Sea (Svalbard to Franz Josef Land) area and increased glacial erosion. Along the Laptev Sea continental margin, on the other hand, the supply of terrigenous (organic) matter was significantly reduced due to the lack of major ice sheets and reduced river discharge. Towards the Holocene, the amount of total organic carbon (TOC) increased along the Kara and Laptev Sea continental margin, reaching average values of up to 0.5 g C/cm**2/ky. Between about 8 and 10 ka (9 and 11 Cal ka), i.e., during times when the inner shallow Kara and Laptev seas became largely flooded for the first time after the Last Glacial Maximum, maximum supply of terrigenous organic carbon occurred, which is related to an increase in coastal erosion and Siberian river discharge. During the last 8000 years, the increased amount of marine organic carbon preserved in the sediments from the Kara and Laptev Sea continental margin is interpreted as a result of the intensification of Atlantic water inflow along the Eurasian continental margin.
Resumo:
Requirements for space based monitoring of permafrost features had been already defined within the IGOS Cryosphere Theme Report at the start of the IPY in 2007 (IGOS, 2007). The WMO Polar Space Task Group (PSTG, http://www.wmo.int/pages/prog/sat/pstg_en.php) identified the need to review the requirements for permafrost monitoring and to update these requirements in 2013. Relevant surveys with focus on satellite data are already available from the ESA DUE Permafrost User requirements survey (2009), the United States National Research Council (2014) and the ESA - CliC - IPA - GTN -P workshop in February 2014. These reports have been reviewed and specific needs discussed within the community and a white paper submitted to the WMO PSTG. Acquisition requirements for monitoring of especially terrain changes (incl. rock glaciers and coastal erosion) and lakes (extent, ice properties etc.) with respect to current satellite missions have been specified. About 50 locations ('cold spots') where permafrost (Arctic and Antarctic) in situ monitoring has been taking place for many years or where field stations are currently established have been identified. These sites have been proposed to the WMO Polar Space Task Group as focus areas for future monitoring by high resolution satellite data. The specifications of these sites including meta-data on site instrumentation have been published as supplement to the white paper (Bartsch et al. 2014, doi:10.1594/PANGAEA.847003). The representativity of the 'cold spots' around the arctic has been in the following assessed based on a landscape units product which has been developed as part of the FP7 project PAGE21. The ESA DUE Permafrost service has been utilized to produce a pan-arctic database (25km, 2000-2014) comprising Mean Annual Surface Temperature, Annual and summer Amplitude of Surface Temperature, Mean Summer (July-August) Surface Temperature. Surface status (frozen/unfrozen) related products have been also derived from the ESA DUE Permafrost service. This includes the length of unfrozen period, first unfrozen day and first frozen day. In addition, SAR (ENVISAT ASAR GM) statistics as well as topographic parameters have been considered. The circumpolar datasets have been assessed for their redundancy in information content. 12 distinct units could be derived. The landscape units reveal similarities between North Slope Alaska and the region from the Yamal Peninsula to the Yenisei estuary. Northern Canada is characterized by the same landscape units like western Siberia. North-eastern Canada shows similarities to the Laptev coast region. This paper presents the result of this assessment and formulates recommendations for extensions of the in situ monitoring networks and categorizes the sites by satellite data requirements (specifically Sentinels) with respect to the landscape type and related processes.
Resumo:
In this study, the grain-size and clay-mineral compositions of 73 surface sediment samples collected in a variety of environmental settings in the White Sea are presented to characterize recent sedimentation processes, reconstruct transport pathways, and identify potential source areas of the terrigenous components. Areas >100 m deep are invariably characterized by silty clay, whereas areas <100 m deep exhibit more heterogeneous grain-size compositions plausibly explained by coastal erosion and (re-)distribution mechanisms, particularly tidal currents. The dominance of sand in the estuarine areas of the Onega and Dvina rivers as well as toward Gorlo Strait connecting the White Sea with the Barents Sea, is attributed to increased current speeds. Illite and smectite are the dominant clay minerals in recent sediments of the southwestern and eastern White Sea sectors, respectively. Their distribution patterns largely depend on the geology of the source areas and mirror surface circulation patterns, especially in Dvina Bay. Smectite is a key clay mineral in White Sea surface sediments as it reveals the dominating influence of the Northern Dvina's runoff on sedimentation and water circulation throughout the basin of the sea. In comparison to other Eurasian shelf seas, the White Sea is characterized by a greater diversity of clay-mineral assemblages, which range from illite- to smectite-dominated sectors containing variable amounts of chlorite and kaolinite.
Resumo:
This article presents a mass balance calculation of the sediment sources and sinks of the Laptev Sea. Sediment input into three regional sectors calculated on the basis of fluvial sediment discharge and coastal erosion sediment supply is compared with sediment output as estimated from sedimentation rates of well-dated marine sediment cores and data on sediment export to the central Arctic Ocean by sea ice and through bottom currents. Within the uncertainties of the calculations, input and output are very well balanced. The calculation reveals that the sediment budget of the Laptev Sea is mainly controlled by fluvial and coastal sediment input. The major fraction of the material is simply deposited on the Laptev Sea shelf. However, for the western Laptev Sea, where sedimentation rates are low due to the absence of large rivers, export by sea ice is the main output factor.
Resumo:
Composition and accumulation rates of organic carbon in Holocene sediments provided data to calculate an organic carbon budget for the Laptev Sea continental margin. Mean Holocene accumulation rates in the inner Laptev Sea vary between 0.14 and 2.7 g C cm**2/ky; maximum values occur close to the Lena River delta. Seawards, the mean accumulation rates decrease from 0.43 to 0.02 g C cm**2/ky. The organic matter is predominantly of terrigenous origin. About 0.9*10**6 t/year of organic carbon are buried in the Laptev Sea, and 0.25*10**6 t/year on the continental slope. Between about 8.5 and 9 ka, major changes in supply of terrigenous and marine organic carbon occur, related to changes in coastal erosion, Siberian river discharge, and/or Atlantic water inflow along the Eurasian continental margin.
Resumo:
Coral reefs persist in an accretion-erosion balance and ocean acidification resulting from anthropogenic CO2 emissions threatens to shift this balance in favor of net reef erosion. Corals and calcifying algae, largely responsible for reef accretion, are vulnerable to environmental changes associated with ocean acidification, but the direct effects of lower pH on reef erosion has received less attention, particularly in the context of known drivers of bioerosion and natural variability. This study examines the balance between reef accretion and erosion along a well-characterized natural environmental gradient in Kane'ohe Bay, Hawai'i using experimental blocks of coral skeleton. Comparing before and after micro-computed tomography (µCT) scans to quantify net accretion and erosion, we show that, at the small spatial scale of this study (tens of meters), pH was a better predictor of the accretion-erosion balance than environmental drivers suggested by prior studies, including resource availability, temperature, distance from shore, or depth. In addition, this study highlights the fine-scale variation of pH in coastal systems and the importance of microhabitat variation for reef accretion and erosion processes. We demonstrate significant changes in both the mean and variance of pH on the order of meters, providing a local perspective on global increases in pCO2. Our findings suggest that increases in reef erosion, combined with expected decreases in calcification, will accelerate the shift of coral reefs to an erosion-dominated system in a high-CO2 world. This shift will make reefs increasingly susceptible to storm damage and sea-level rise, threatening the maintenance of the ecosystem services that coral reefs provide.
Resumo:
Heavy (magnetic & non-magnetic) minerals are found concentrated by natural processes in many fluvial, estuarine, coastal and shelf environments with a potential to form economic placer deposits. Understanding the processes of heavy mineral transport and enrichment is prerequisite to interpret sediment magnetic properties in terms of hydro- and sediment dynamics. In this study, we combine rock magnetic and sedimentological laboratory measurements with numerical 3D discrete element models to investigate differential grain entrainment and transport rates of magnetic minerals in a range of coastal environments (riverbed, mouth, estuary, beach and near-shore). We analyzed grain-size distributions of representative bulk samples and their magnetic mineral fractions to relate grain-size modes to respective transport modes (traction, saltation, suspension). Rock magnetic measurements showed that distribution shapes, population sizes and grain-size offsets of bulk and magnetic mineral fractions hold information on the transport conditions and enrichment process in each depositional environment. A downstream decrease in magnetite grain size and an increase in magnetite concentration was observed from riverine source to marine sink environments. Lower flow velocities permit differential settling of light and heavy mineral grains creating heavy mineral enriched zones in estuary settings, while lighter minerals are washed out further into the sea. Numerical model results showed that higher heavy mineral concentrations in the bed increased the erosion rate and enhancing heavy mineral enrichment. In beach environments where sediments contained light and heavy mineral grains of equivalent grain sizes, the bed was found to be more stable with negligible amount of erosion compared to other bed compositions. Heavy mineral transport rates calculated for four different bed compositions showed that increasing heavy mineral content in the bed decreased the transport rate. There is always a lag in transport between light and heavy minerals which increases with higher heavy mineral concentration in all tested bed compositions. The results of laboratory experiments were validated by numerical models and showed good agreement. We demonstrate that the presented approach bears the potential to investigate heavy mineral enrichment processes in a wide range of sedimentary settings.
Resumo:
Long-term surveys of the coast bordering the western Baltic Sea in Schleswig-Holstein yielded extensive information over the retreat and condition of active cliffs. 181 cliffs with a total length of 148 km are present along the 55 km coastline including Fehmarn lsland and the Schlei Fjord. Depending on their temporal and spatial evolution, and geomorphological stability, the cliffs are subdivided in three separate classes - actively retreating escarpments, cliff Segments with potential for retreat and stable cliffs. 85 sections of the coastline with a total length of 59 km are classified as ,,active cliffs" that are undergoing retreat through natural erosion, collapse, and disintegration.
Resumo:
The mineralogical compositions of 119 samples collected from throughout the San Francisco Bay coastal system, including bayfloor and seafloor, area beaches, cliff outcrops, and major drainages, were determined using X-ray diffraction (XRD). Comparison of the mineral concentrations and application of statistical cluster analysis of XRD spectra allowed for the determination of provenances and transport pathways. The use of XRD mineral identifications provides semi-quantitative compositions needed for comparisons of beach and offshore sands with potential cliff and river sources, but the innovative cluster analysis of XRD diffraction spectra provides a unique visualization of how groups of samples within the San Francisco Bay coastal system are related so that sand-sized sediment transport pathways can be inferred. The main vector for sediment transport as defined by the XRD analysis is from San Francisco Bay to the outer coast, where the sand then accumulates on the ebb tidal delta and also moves alongshore. This mineralogical link defines a critical pathway because large volumes of sediment have been removed from the Bay over the last century via channel dredging, aggregate mining, and borrow pit mining, with comparable volumes of erosion from the ebb tidal delta over the same period, in addition to high rates of shoreline retreat along the adjacent, open-coast beaches. Therefore, while previously only a temporal relationship was established, the transport pathway defined by mineralogical and geochemical tracers support the link between anthropogenic activities in the Bay and widespread erosion outside the Bay. The XRD results also establish the regional and local importance of sediment derived from cliff erosion, as well as both proximal and distal fluvial sources. This research is an important contribution to a broader provenance study aimed at identifying the driving forces for widespread geomorphic change in a heavily urbanized coastal-estuarine system.
Resumo:
Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological and geochemical proxies. Radiocarbon and Pb/Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~ 1,400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the "alder high" that occurred in the region ~ 4.0 cal ka BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were therefore archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.
Resumo:
Over 150 million cubic meter of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach sized-sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.