43 resultados para coalbed natural gas


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methane hydrates are present in marine seep systems and occur within the gas hydrate stability zone. Very little is known about their crystallite sizes and size distributions because they are notoriously difficult to measure. Crystal size distributions are usually considered as one of the key petrophysical parameters because they influence mechanical properties and possible compositional changes, which may occur with changing environmental conditions. Variations in grain size are relevant for gas substitution in natural hydrates by replacing CH4 with CO2 for the purpose of carbon dioxide sequestration. Here we show that crystallite sizes of gas hydrates from some locations in the Indian Ocean, Gulf of Mexico and Black Sea are in the range of 200-400 µm; larger values were obtained for deeper-buried samples from ODP Leg 204. The crystallite sizes show generally a log-normal distribution and appear to vary sometimes rapidly with location.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The state of preservation of natural gas hydrate samples, recovered from 6 sites drilled during ODP Leg 204 at southern summit of Hydrate Ridge, Oregon Margin, has been investigated by X-ray diffraction (XRD) and cryo-scanning-electron-microscopy (cryo-SEM) techniques. A detailed characterization of the state of decomposition of gas hydrates is necessary since no pressurized autoclave tools were used for sampling and partial dissociation must have occurred during recovery prior to the quench and storage in liquid nitrogen. Samples from 16 distinct horizons have been investigated by synchrotron X-ray diffraction measurements at HASYLAB/ Hamburg. A full profile fitting analysis ("Rietveld method") of synchrotron XRD data provides quantitative phase determinations of the major sample constituents such as gas hydrate structure I (sI), hexagonal ice (Ih) and quartz. The ice content (Ih) in each sample is related to frozen water composed of both original existing pore water and the water from decomposed hydrates. Hydrate contents as measured by diffraction vary between 0 and 68 wt.% in the samples we measured. Samples with low hydrate content usually show micro-structural features in cryo-SEM ascribed to extensive decomposition. Comparing the appearance of hydrates at different scales, the grade of preservation seems to be primarily correlated with the contiguous volume of the original existing hydrate; the dissociation front appears to be indicated by micrometer-sized pores in a dense ice matrix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since being first discovered in the Blake-Bahama region of the west Atlantic in the 1970s (Hollister, Ewing, et al., 1972, doi:10.2973/dsdp.proc.11.1972), submarine gas hydrates have been identified in the continental margin worldwide. Ocean Drilling Program (ODP) Leg 164 was the first drilling designated to study the occurrence and distribution of natural gas hydrates in Blake Ridge where a well developed, distinct BSR (Bottom Simulating Reflector) has been identified (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996). It has been reported there is a prominent discrepancy between the BSR and the base of gas hydrate stability (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996; Ruppel, 1997, doi:10.1130/0091-7613(1997)025<0699:ACTOAT>2.3.CO;2), though theoretically they should be at the same depth. Natural gas hydrate in marine sediments coexists with sediment particles, so detailed delineation of sediment geochemistry will be of benefit to solve this apparent discrepancy. The main objectives of this study are to supply background data of the major chemical compositions of sediments from a hydrated sediment section.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the first high-resolution (500 m × 500 m) gridded methane (CH4) emission inventory for Switzerland, which integrates the national emission totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and recent CH4 flux studies conducted by research groups across Switzerland. In addition to anthropogenic emissions, we also include natural and semi-natural CH4 fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as uptake by forest soils. National CH4 emissions were disaggregated using detailed geostatistical information on source locations and their spatial extent and process- or area-specific emission factors. In Switzerland, the highest CH4 emissions in 2011 originated from the agricultural sector (150 Gg CH4/yr), mainly produced by ruminants and manure management, followed by emissions from waste management (15 Gg CH4/yr) mainly from landfills and the energy sector (12 Gg CH4/yr), which was dominated by emissions from natural gas distribution. Compared to the anthropogenic sources, emissions from natural and semi-natural sources were relatively small (6 Gg CH4/yr), making up only 3 % of the total emissions in Switzerland. CH4 fluxes from agricultural soils were estimated to be not significantly different from zero (between -1.5 and 0 Gg CH4/yr), while forest soils are a CH4 sink (approx. -2.8 Gg CH4/yr), partially offsetting other natural emissions. Estimates of uncertainties are provided for the different sources, including an estimate of spatial disaggregation errors deduced from a comparison with a global (EDGAR v4.2) and a European CH4 inventory (TNO/MACC). This new spatially-explicit emission inventory for Switzerland will provide valuable input for regional scale atmospheric modeling and inverse source estimation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On the base of data of Cruise 40 of R/V Akademik Keldysh features of formation of saline composition of interstitial waters from sediments containing free hydrocarbons (methane) and gas hydrates (CH4 x 6H2O) were considered. Chemical composition of the interstitial waters is presented for three zones of sediments from the Haakon Mosby submarine mud volcano: (1) zone of kettles containing free hydrocarbons, (2) gas hydrate sediments, and (3) periphery of the volcano. Abnormally high concentrations of bromine and especially iodine characteristic of the interstitial and particularly of the oil-field waters were found. Because of a great interest in natural gas hydrates found in marine sediments, we obtained a possibility to supplement scarce of available published data with some new information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The authigenic carbonate mineral ikaite is specific of low-temperature high latitude environments. The depletion of ikaite carbon in 13C isotopes in most cases implies a causal relation of ikaite generation with methane geochemistry. In this paper we present new data on ikaite minerals in Holocene sediments sampled along the Yenisei channel at the southern (74°N) and northern (77°N) ends. Stable carbon isotopes of the ikaite crystals were studied in conjunction with the hydrochemistry and isotope geochemistry of the sediments. Pore water and natural gas samples were separated from sediments to describe the methane carbon isotope distribution pattern throughout two sedimentary sequences embedding the ikaite crystals of different isotope composition (-24 per mil and -42 per mil). The biogenic nature of the methane is indicated by 51 C values being as low as -104.4 per mil. In the case of the moderately depleted sample (-24 per mil) from the southern location the small-scale ikaite formation fits best into the concept of a 'closed» sediment system, with a limited diagenetic carbon dioxide source being present. In the second case, formation of highly abundant and isotopically depleted ikaite crystals (-42 per mil) were caused by upwards flux of biogenic methane from below. Contribution of two main carbon sources to the ikaite crystals was estimated by using a isotope-mass balance equation. Organic-derived CO2 constitutes the principal source in both samples, amounting to 50 % of the total carbon of the strongly depleted ikaite crystals (-42 per mil) sampled at the northern end and 83 % for the moderately (-24 per mil) depleted crystals from the southern end. Methane-derived CO2 comes to 42 % for the isotopically light ikaite crystals and to 9% for the isotopically heavy crystals. The importance of sediment lithology and diffusive transport for ikaite formation is emphazied.