348 resultados para classification and regression tree
Resumo:
Petrographical and mineral chemistry data are described for the mist representative basement lithologies occurring as clasts (pebble grain-size class) from the CRP-1 drillhole. Most pebbles consits of either undeformed or foliated biotite with or without hornblende monzogranites. Other rock types include biotite with or without garnet syenogranitr, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries, haplogranite, quartz-monzonite (restricted to the Quaternary section), Ca-silicate rocks and biotite amphibolite (restricted to the Miocene strata). The common and ubiquitous occurence of biotite with or without hornblende monzogranite pebbles, in both the Quaternary and Miocene sections, apparently mirrors the dominance of these rock types in the granitoid assemblages which are presently exposed in the upper Precambrian-lower Paleozoic basement of the south Victoria Land. The other CRP-1 pebble lithologies show petrographical features which consitently support a dominant supply from areas of the Transantarctic Mountains located to the west and south-west of the CRP-1 site, and they thus furthercorroborate a model of local provenance for the supply of basement clasts to the CRP-1 sedimentary strata.
Resumo:
Annual precipitation for the last 2,500 years was reconstructed for northeastern Qinghai from living and archaeological juniper trees. A dominant feature of the precipitation of this area is a high degree of variability in mean rainfall at annual, decadal, and centennial scales, with many wet and dry periods that are corroborated by other paleoclimatic indicators. Reconstructed values of annual precipitation vary mostly from 100 to 300 mm and thus are no different from the modern instrumental record in Dulan. However, relatively dry years with below-average precipitation occurred more frequently in the past than in the present. Periods of relatively dry years occurred during 74-25 BC, AD 51-375, 426-500, 526-575, 626-700, 1100-1225, 1251-1325, 1451-1525, 1651-1750 and 1801-1825. Periods with a relatively wet climate occurred during AD 376-425, 576-625, 951-1050, 1351-1375, 1551-1600 and the present. This variability is probably related to latitudinal positions of winter frontal storms. Another key feature of precipitation in this area is an apparently direct relationship between interannual variability in rainfall with temperature, whereby increased warming in the future might lead to increased flooding and droughts. Such increased climatic variability might then impact human societies of the area, much as the climate has done for the past 2,500 years.
Resumo:
Manual and low-tech well drilling techniques have potential to assist in reaching the United Nations' millennium development goal for water in sub-Saharan Africa. This study used publicly available geospatial data in a regression tree analysis to predict groundwater depth in the Zinder region of Niger to identify suitable areas for manual well drilling. Regression trees were developed and tested on a database for 3681 wells in the Zinder region. A tree with 17 terminal leaves provided a range of ground water depth estimates that were appropriate for manual drilling, though much of the tree's complexity was associated with depths that were beyond manual methods. A natural log transformation of groundwater depth was tested to see if rescaling dataset variance would result in finer distinctions for regions of shallow groundwater. The RMSE for a log-transformed tree with only 10 terminal leaves was almost half that of the untransformed 17 leaf tree for groundwater depths less than 10 m. This analysis indicated important groundwater relationships for commonly available maps of geology, soils, elevation, and enhanced vegetation index from the MODIS satellite imaging system.
Resumo:
The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the current Low Arctic. Central to the prediction of forest expansion is an increase in the reproductive capacity and establishment of individual trees. We assessed cone production, seed viability, and transplanted seedling success of Picea glauca (Moench.) Voss. (white spruce) in the early 1990s and again in the late 2000s at four forest stand sites and eight tree island sites (clonal populations beyond present treeline) in the Mackenzie Delta region of the Northwest Territories, Canada. Over the past 20 years, average temperatures in this region have increased by 0.9 °C. This area has the northernmost forest-tundra ecotone in North America and is one of the few circumpolar regions where the northern limit of conifer trees reaches the Arctic Ocean. We found that cone production and seed viability did not change between the two periods of examination and that both variables decreased northward across the forest-tundra ecotone. Nevertheless, white spruce individuals at the northern limit of the forest-tundra ecotone produced viable seeds. Furthermore, transplanted seedlings were able to survive in the northernmost sites for 15 years, but there were no signs of natural regeneration. These results indicate that if climatic conditions continue to ameliorate, reproductive output will likely increase, but seedling establishment and forest expansion within the forest-tundra of this region is unlikely to occur without the availability of suitable recruitment sites. Processes that affect the availability of recruitment sites are likely to be important elsewhere in the circumpolar ecotone, and should be incorporated into models and predictions of climate change and its effects on the northern forest-tundra ecotone.
Resumo:
Woodland savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to intensive land uses. This study investigates the land cover changes of 108,038 km**2 in NE Namibia using multi-temporal, multi-sensor Landsat imagery, at decadal intervals from 1975 to 2014, with a post-classification change detection method and supervised Regression Tree classifiers. We discuss likely impacts of land tenure and reforms over the past four decades on changes in land use and land cover. These changes included losses, gains and exchanges between predominant land cover classes. Exchanges comprised logical conversions between woodland and agricultural classes, implying woodland clearing for arable farming, cropland abandonment and vegetation succession. The most dominant change was a reduction in the area of the woodland class due to the expansion of the agricultural class, specifically, small-scale cereal and pastoral production. Woodland area decreased from 90% of the study area in 1975 to 83% in 2014, while cleared land increased from 9% to 14%. We found that the main land cover changes are conversion from woodland to agricultural and urban land uses, driven by urban expansion and woodland clearing for subsistence-based agriculture and pastoralism.