21 resultados para cement-in-cement


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Andesitic volcaniclastic sandstones of Middle Eocene age recovered from DSDP Sites 445 and 446, a back-arc basin, contain clinoptilolite, heulandite and analcite as a pore-filling cement. Clinoptilolite and heulandite at Sites 445 and 446 contain different chemical composition from other deep-sea clinoptilolites and heulandites. The dominant cation of both clinoptilolite and heulandite is Na+ ion activity in pore water was greater at the time of their formation. Volcanic glass has acted as a precursor for both clinoptilolite and heulandite at Sites 445 and 446. Biogenic silica is also suggested as a precursor. High Na+ ion activity in pore water also helped to transform clinoptilolite and heulandite to analcite downhole. The necessary Na+ ions for this clinoptilolite, heulandite and analcite at Sites 445 and 446 might have been provided by hydrothermal circulation of seawater through more permeable sandstones deposited during early stages of back-arc basin rifting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Authigenic carbonate deposits have been sampled with the remotely operated vehicle 'MARUM-QUEST 4000 m' from five methane seeps between 731 and 1823 m water depth along the convergent Makran continental margin, offshore Pakistan (northern Arabian Sea). Two seeps on the upper slope are located within the oxygen minimum zone (OMZ; ca. 100 to 1100 m water depth), the other sites are situated in oxygenated water below the OMZ (below 1100 m water depth). The carbonate deposits vary with regard to their spatial extent, sedimentary fabrics, and associated seep fauna: Within the OMZ, carbonates are spatially restricted and associated with microbial mats, whereas in the oxygenated zone below the OMZ extensive carbonate crusts are exposed on the seafloor with abundant metazoans (bathymodiolin mussels, tube worms, galatheid crabs). Aragonite and Mg-calcite are the dominant carbonate minerals, forming common early diagenetic microcrystalline cement and clotted to radial-fibrous cement. The delta18O carbonate values range from 1.3 to 4.2 per mil V-PDB, indicating carbonate precipitation at ambient bottom-water temperature in shallow sediment depth. Extremely low delta13Ccarbonate values (as low - 54.6per mil V-PDB) point to anaerobic oxidation of methane (AOM) as trigger for carbonate precipitation, with biogenic methane as dominant carbon source. Prevalence of biogenic methane in the seepage gas is corroborated by delta13C methane values ranging from - 70.3 to - 66.7per mil V-PDB, and also by back-calculations considering delta 13C methane values of carbonate and incorporated lipid biomarkers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atmospheric carbon dioxide (pCO2) has risen from approximately 280 to 400 ppm since the Industrial Revolution, due mainly to the combustion of fossil fuels, deforestation, and cement production. It is predicted to reach as high as 900 ppm by the end of this century. Ocean acidification resulting from the release of anthropogenic CO2 has been shown to impair the ability of some marine calcifiers to build their shells and skeletons. Here, we present the results of ocean acidification experiments designed to assess the effects of an increase in atmospheric pCO2 from ca. 448 to 827 ppm on calcification rates of the tropical urchin Echinometra viridis. Experiments were conducted under the urchin's winter (20 °C) and summer (30 °C) water temperatures in order to identify seasonal differences in the urchin's response to ocean acidification. The experiments reveal that calcification rates decreased for urchins reared under elevated pCO2, with the decline being more pronounced under wintertime temperatures than under summertime temperatures. These results indicate that the urchin E. viridis will be negatively impacted by CO2-induced ocean acidification that is predicted to occur by the end of this century. These results also suggest that impact of CO2-induced ocean acidification on urchin calcification will be more severe in the winter and in cooler waters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Jurassic (hemi)pelagic continental margin deposits drilled at Hole 547B, off the Moroccan coast, reveal striking Tethyan affinity. Analogies concern not only types and gross vertical evolution of facies, but also composition and textures of the fine sediment and the pattern of diagenetic alteration. In this context, the occurrence of the nanno-organism Schizosphaerella Deflandre and Dangeard (sometimes as a conspicuous portion of the fine-grained carbonate fraction) is of particular interest. Schizosphaerella, an incertae sedis taxon, has been widely recorded as a sediment contributor from Tethyan Jurassic deeper-water carbonate facies exposed on land. Because of its extremely long range (Hettangian to early Kimmeridgian), the genus Schizosphaerella (two species currently described, S. punctulata Deflandre and Dangeard and S. astrea Moshkovitz) is obviously not of great biostratigraphic interest. However, it is of interest in sedimentology and petrology. Specifically, Schizosphaerella was often the only component of the initial fine-grained fraction of a sediment that was able to resist diagenetic obliteration. However, alteration of the original skeletal structure did occur to various degrees. Crystal habit and mineralogy of the fundamental skeletal elements, as well as their mode of mutual arrangement in the test wall with the implied high initial porosity of the skeleton (60-70%), appear to be responsible for this outstanding resistance. Moreover, the ability to concentrate within and, in the case of the species S. punctulata, around the skeleton, large amounts of diagenetic calcite also contributed to the resistance. In both species of Schizosphaerella, occlusion of the original skeletal void space during diagenesis appears to have proceeded in an analogous manner, with an initial slight uniform syntaxial enlargement of the basic lamellar skeletal crystallites followed, upon mutual impingement, by uneven accretion of overgrowth cement in the remaining skeletal voids. However, distinctive fabrics are evident according to the different primary test wall architecture. In S. punctulata, intraskeletal cementation is usually followed by the growth of a radially structured crust of bladed to fibrous calcite around the valves. These crusts are interpreted as a product of aggrading neomorphism, associated with mineralogic stabilization of the original, presumably polyphase, sediment. Data from Hole 547B, along with inferences, drawn from the fabric relationships, suggest that the crusts formed and (inferentially) mineralogic stabilization occurred at a relatively early time in the diagenetic history in the shallow burial realm. An enhanced rate of lithification at relatively shallow burial depths and thus the chance for neomorphism to significantly influence the textural evolution of the buried sediment may be related to a lower Mg/Ca concentration ratio in the oceanic system and, hence, in marine pore waters in pre-Late Jurassic times.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report d18O and minor element (Mg/Ca, Sr/Ca) data acquired by high-resolution, in situ secondary ion mass spectrometry (SIMS) from planktic foraminiferal shells and 100-500 µm sized diagenetic crystallites recovered from a deep-sea record (ODP Site 865) of the Paleocene-Eocene thermal maximum (PETM). The d18O of crystallites (~1.2 per mil Pee Dee Belemnite (PDB)) is ~4.8 per mil higher than that of planktic foraminiferal calcite (-3.6 per mil PDB), while crystallite Mg/Ca and Sr/Ca ratios are slightly higher and substantially lower than in planktic foraminiferal calcite, respectively. The focused stratigraphic distribution of the crystallites signals an association with PETM conditions; hence, we attribute their formation to early diagenesis initially sourced by seafloor dissolution (burndown) ensued by reprecipitation at higher carbonate saturation. The Mg/Ca ratios of the crystallites are an order of magnitude lower than those predicted by inorganic precipitation experiments, which may reflect a degree of inheritance from "donor" phases of biogenic calcite that underwent solution in the sediment column. In addition, SIMS d18O and electron microprobe Mg/Ca analyses that were taken within a planktic foraminiferal shell yield parallel increases along traverses that coincide with muricae blades on the chamber wall. The parallel d18O and Mg/Ca increases indicate a diagenetic origin for the blades, but their d18O value (-0.5 per mil PDB) is lower than that of crystallites suggesting that these two phases of diagenetic carbonate formed at different times. Finally, we posit that elevated levels of early diagenesis acted in concert with sediment mixing and carbonate dissolution to attenuate the d18O decrease signaling PETM warming in "whole-shell" records published for Site 865.