19 resultados para bubble nucleation
(Table 2) Bubble sizes in waters of the Atlantic Ocean from results of measurements aboard R/V Nerey
Resumo:
Typical size of bubbles obtained from cavitation inception pressure measured in the surface layer of the Atlantic Ocean in situ aboard R/V Professor Vize in 1971 and Nerey in 1973 are reported. These results do not contradict ones of bubble size measurements using optical or acoustical techniques. Variability of bubble size is discovered and described. This variability is related to passing from one geographical region to another (from 68°55'S to 61°52'N), to changes in depth (from 5 to 100 m) and in day time, as well as to spatial fluctuations within an aquatic area. It is suggested that, in addition to wave breaking, there is another source of bubbles at depth 10-20 m that associates with hydrobiological processes.
Resumo:
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to 650 mmol L**-1 at 150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at 60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (dD-CH4 = -170.8 per mil (SMOW), d13C-CH4 = -61.0 per mil (V-PDB), d13C-C2H6 = -44.0 per mil (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 x 10**6 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.