106 resultados para bivalve larvae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Live-imaging techniques (LIT) utilize target-specific fluorescent dyes to visualize biochemical processes using confocal and multiphoton scanning microscopy, which are increasingly employed as non-invasive approach to physiological in-vivo and ex-vivo studies. Here we report application of LIT to bivalve gills for ex-vivo analysis of gill physiology and mapping of reactive oxygen (ROS) and nitrogen (RNS) species formation in the living tissue. Our results indicate that H2O2, HOO. and ONOO- radicals (assessed through C-H2DFFDA staining) are mainly formed within the blood sinus of the filaments and are likely to be produced by hemocytes as defense against invading pathogens. The oxidative damage in these areas is controlled by enhanced CAT (catalase) activities recorded within the filaments. The outermost areas of the ciliated epithelial cells composing the filaments, concentrated the highest mitochondrial densities (MTK Deep Red 633 staining) and the most acidic pH values (as observed with ageladine-a). These mitochondria have low (depolarized) membrane potentials (D psi m) (JC-1 staining), suggesting that the high amounts of ATP required for ciliary beating may be in part produced by non-mitochondrial mechanisms, such as the enzymatic activity of an ATP-regenerating kinase. Nitric oxide (NO, DAF-2DA staining) produced in the region of the peripheral mitochondria may have an effect on mitochondrial electron transport and possibly cause the low membrane potential. High DAF-2DA staining was moreover observed in the muscle cells composing the wall of the blood vessels where NO may be involved in regulating blood vessel diameter. On the ventral bend of the gills, subepithelial mucus glands (SMG) contain large mucous vacuoles showing higher fluorescence intensities for O2.- (DHE staining) than the rest of the tissue. Given the antimicrobial properties of superoxide, release of O2.- into the mucus may help to avoid the development of microbial biofilms on the gill surface. However, cells of the ventral bends are paying a price for this antimicrobial protection, since they show significantly higher oxidative damage, according to the antioxidant enzyme activities and the carbonyl levels, than the rest of the gill tissue. This study provides the first evidence that one single epithelial cell may contain mitochondria with significantly different membrane potentials. Furthermore, we provide new insight into ROS and RNS formation in ex-vivo gill tissues which opens new perspectives for unraveling the different ecophysiological roles of ROS and RNS in multifunctional organs such as gills.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A morphometric analysis was performed for the late Middle Miocene bivalve species lineage of Polititapes tricuspis (Eichwald, 1829) (Veneridae: Tapetini). Specimens from various localities grouped into two stratigraphically successive biozones, i.e. the upper Ervilia Zone and the Sarmatimactra Zone, were investigated using a multi-method approach. A Generalized Procrustes Analysis was computed for fifteen landmarks, covering characteristics of the hinge, muscle scars, and pallial line. The shell outline was separately quantified by applying the Fast Fourier Transform, which redraws the outline by fitting in a combination of trigonometric curves. Shell size was calculated as centroid size from the landmark configuration. Shell thickness, as not covered by either analysis, was additionally measured at the centroid. The analyses showed significant phenotypic differentiation between specimens from the two biozones. The bivalves become distinctly larger and thicker over geological time and develop circular shells with stronger cardinal teeth and a deeper pallial sinus. Data on the paleoenvironmental changes in the late Middle Miocene Central Paratethys Sea suggest the phenotypic shifts to be functional adaptations. The typical habitats for Polititapes changed to extensive, very shallow shores exposed to high wave action and tidal activity. Caused by the growing need for higher mechanical stability, the bivalves produced larger and thicker shells with stronger cardinal teeth. The latter are additionally shifted towards the hinge center to compensate for the lacking lateral teeth and improve stability. The deepening pallial sinus is related to a deeper burrowing habit, which is considered to impede being washed out in the new high-energy settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandy beaches of the Anapa Bay Bar are a unique natural resource, but they are gradually being degrade under both natural and anthropogenic factors. Emissions of sand and shelly ground from the adjacent sea bottom partly compensate for this process. Concentration of carbonates may reach up to 50% in beach sands, and most of these carbonates are of mollusk origin. The major deposit formation role belongs to the key bivalve species: Chamelea gallina (Linnaeus, 1758). Average biomass of this mollusk species reaches up to 450 g/m**2 at depths 5-10 m. The other two subdominating mollusk species, bivalve Donax trunculus (Linnaeus, 1758) and gastropod Rapana venosa (Valenciennes, 1846), may impact as 16 g/m**2 and 6 g/m**2, respectively. Annually, 350 kg of shelly ground per running meter are newly deposited on the Anapa beach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the generally oligotroph Arctic marine environment river outlets are favoured by many planktonic and benthic organisms due to their high input of organic carbon. The retention of pelagic larvae within nursery grounds and/or the ability to return to their parental grounds prior to settlement is one important factor for the persistence of benthic communities in such river influenced areas. The southern Kara Sea is strongly controlled by high freshwater inputs from the Ob and Yenisei Rivers, which create a pronounced bi-layered pycnocline with a warm fresh/brackish water layer on top and a cold high saline marine layer below. The dispersal of five meroplanktonic species and settled juveniles (the brittle star Ophiocten sericeum, and the polychaetes Micronephtys minuta, Nereimyra aphroditoides, Phyllodoce groenlandica and Prionospio cirrifera) in relation to the adult distribution patterns was investigated. For all apart from P. cirrifera the highest densities of larvae were found in the upper brackish water layer. To assess size-at-settlement, the body sizes of larvae and newly settled juveniles were estimated and compared. Dispersal patterns ranged from virtually no adaption to river run-off as in the common, stenohaline O. sericeum and M. minuta (7 ind./m**3, 459 µm) to local retention as in N. aphroditoides (7 ind./m**3, 541 µm) and P. groenlandica (0.5 ind./m**3, 1121 µm) retained by horizontal eddies created by the outflow. Adults of P. cirrifera, which were exclusively restricted to the estuary of the Yenisei River, showed a well adapted reproductive behaviour to ensure a high retention potential of their progenies. The larvae (1.5 ind./m**3, 1513 µm) were only present in the lower water layers, most probably taking advantage of the prevailing near bottom counter current retaining them within their hatching areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiversity estimates through geological times are difficult because of taphonomic perturbations that affect sedimentary records. Pristine shell assemblages, however, allow for calibration of past diversity. Diversity structures of two exceptionally preserved Miocene bivalve assemblages are quantitatively determined, compared with recent communities and used as paleoenvironmental proxy. The extremely rich assemblages were collected in Aquitanian (Early Miocene) carbonate sands of the Vives Quarry (Meilhan, SW France). Both paleontological and sedimentological data indicate a coral patch-reef environment, which deposits were affected by transport processes. Among two samples more than 28.000 shells were counted and 135 species identified. Sample Vives 1 is interpreted as a proximal debris flow and Sample Vives 2 as a sandy shoreface/foreshore environment influenced by storms. The two Vives assemblages have a similar diversity structure despite facies differences. Rarefaction curves level off at ~600 shells. The rare species account for more than 80 % of the species pool. The high values of PIE diversity index suggest a relatively high species richness and an even distribution of abundance of the most common species within the assemblages. The fossil data are compared to death shell assemblages (family level) of a modern reefal setting (Touho area, New Caledonia). The shape of the rarefaction curves and PIE indices of Meilhan fossil assemblages compare well to modern data, especially those of deep (>10 m water depth), sandy depositional environments found downward the reef slope (slope and pass settings). In addition to primary ecological signals, the similarity of the Vives samples and the Recent deep samples derives from taphonomic processes. This assumption is supported by sedimentological and paleontological observations. Sediment transports gather allochthonous and in situ materials leading to mixing of various ecological niches. Such taphonomic processes are recorded in the diversity metrics. Environmental mixing and time-averaging of the shell assemblages disturb the preservation of local-scale diversity properties but favour the sampling of the regional-scale diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular mechanisms of calcification in sea urchin larvae are still not well understood. Primary mesenchyme cells within the larval body cavity form a syncytium to secrete CaCO3 spicules from intracellular amorphous CaCO3 (ACC) stores. We studied the role of Na+K+2Cl- cotransporter (NKCC) in intracellular ACC accumulation and larval spicule formation of Strongylocentrotus droebachiensis. First, we incubated growing larvae with three different loop diuretics (azosemide, bumetanide, and furosemide) and established concentration-response curves. All loop diuretics were able to inhibit calcification already at concentrations that specifically inhibit NKCC. Calcification was most effectively inhibited by azosemide (IC50 = 6.5 µM), while larval mortality and swimming ability were not negatively impacted by the treatment. The inhibition by bumetanide (IC50 = 26.4 µM) and furosemide (IC50 = 315.4 µM) resembled the pharmacological fingerprint of the mammalian NKCC1 isoform. We further examined the effect of azosemide on the maintenance of cytoplasmic cords and on the occurrence of calcification vesicles using fluorescent dyes (calcein, FM1-43). Fifty micromolars of azosemide inhibited the maintenance of cytoplasmic cords and resulted in increased calcein fluorescence within calcification vesicles. The expression of NKCC in S. droebachiensis was verified by PCR and Western blot with a specific NKCC antibody. In summary, the pharmacological profile of loop diuretics and their specific effects on calcification in sea urchin larvae suggest that they act by inhibition of NKCC via repression of cytoplasmic cord formation and maintenance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genus Calyptogena (Bivalvia: Vesicomyidae) comprises highly specialized bivalves living in symbiosis with sulphur-oxidizing bacteria in reducing habitats. In this study, the genus is revised using shell and anatomical features. The work is based on type material, as well as on the extensive collection of vesicomyids obtained during twelve expeditions to the Pacific and Indian Oceans. Nine Recent species are ascribed to the genus Calyptogena, four of which are new: C. pacifica Dall, 1891, C. fausta Okutani, Fujikura & Hashimoto, 1993, C. rectimargo Scarlato, 1981, C. valdiviae (Thiele & Jaeckel, 1931), C. gallardoi Sellanes & Krylova, 2005, C. goffrediae n. sp., C. starobogatovi n. sp., C. makranensis n. sp. and C. costaricana n. sp. The characteristic features of Calyptogena are: shell up to 90 mm in length, elongate-elliptical or elongate; presence of escutcheon; presence of broad posterior ramus (3b) of right subumbonal cardinal tooth as well as right posterior nymphal ridge; absence of pallial sinus as a result of attachment of intersiphonal septal retractor immediately adjacent to ventral surface of posterior adductor; absence of processes on inner vulva of inhalant siphon; presence of inner demibranch only, with descending and ascending lamellae with interlamellar septa not divided into separate tubes. The most closely related taxa to Calyptogena are probably the genus Isorropodon Sturany, 1896, and the group of species represented by 'Calyptogena' phaseoliformis Métivier, Okutani & Ohta, 1986. These groups have several characters in common, namely absence of pallial sinus, presence of single inner pair of demibranchs and absence of processes on inner vulva of inhalant siphon. The worldwide distribution of the genus Calyptogena suggests that methane seeps at continental margins are the major dispersal routes and that speciation was promoted by geographical isolation. Recent species diversity and fossil records indicate that the genus originated in the Pacific Ocean. Sufficient data to discuss the distribution at species level exist only for C. pacifica, which has a remarkably narrow bathymetric range. Published studies on the physiology of C. pacifica suggest that adaptation to a specific geochemical environment has led to coexisting vesicomyid genera. The bacteria-containing gill of C. pacifica and other Calyptogena species is one of the most specialized in the family Vesicomyidae and may reflect these ecological adaptations.