17 resultados para acetic acid ethyl ester


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new isotopic data for sedimentary planktonic foraminifera, as well as for potential water column and sedimentary sources of neodymium (Nd), which confirm that the isotopic composition of the foraminifera is the same as surface seawater and very different from deep water and sedimentary Nd. The faithfulness with which sedimentary foraminifera record the isotopic signature of surface seawater Nd is difficult to explain given their variable and high Nd/Ca ratios, ratios that are often sedimentary foraminifera, ratios that are often much higher than is plausible for direct incorporation within the calcite structure. We present further data that demonstrate a similarly large range in Nd/Ca ratios in plankton tow foraminifera, a range that may be controlled by redox conditions in the water column. Cleaning experiments reveal, in common with earlier work, that large amounts of Nd are released by cleaning with both hydrazine and diethylene triamine penta-acetic acid, but that the Nd released at each step is of surface origin. While further detailed studies are required to verify the exact location of the surface isotopic signature and the key controls on foraminiferal Nd isotope systematics, these new data place the use of planktonic foraminifera as recorders of surface water Nd isotope ratios, and thus of variations in the past supply of Nd to the oceans from the continents via weathering and erosion, on a reasonably sure footing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron speciation was determined in hemiplegic sediments from a high productivity area to investigate systematically the early diagenetic reactivity of Fe. A combination of various leaching agents (1 M HCI, dithionite buffered in citrate/acetic acid, HF/H2SO4, acetic Cr(II)) was applied to sediment and extracted more than 80% of total Fe. Subsequent Fe species determination defined specific mineral fractions that are available for Fe reduction and fractions formed as products of Fe diagenesis. To determine the Fe speciation of (sheet) silicates we explored an extraction procedure (HF/H2SO4) and verified the procedure by application to standard rocks. Variations of Fe speciation of (sheet) silicates reflect the possible formation of Fe-bearing silicates in near surface sediments. The same fraction indicates a change in the primary input at greater depth, which is supported by other parameters. The Fe(II)/ Fe(III) -ratio of total sediment determined by extractions was compared with Mössbauer-spectroscopy ] at room temperature and showed agreement within 10%. M6ssbauer-spectroscopy indicates the occurrence of siderite in the presence of free sulfide and pyrite, supporting the importance of microenvironments during mineral formation. The occurrence of other Fe(II) bearing minerals such as ankerite (Ca-, Fe-, Mg-carbonate) can be presumed but remains speculative.