50 resultados para Zoning--Massachusetts--Wayland--Maps
Resumo:
A shallow gas depth-contour map covering the Skagerrak-western Baltic Sea region has been constructed using a relatively dense grid of existing shallow seismic lines. The digital map is stored as an ESRI shape file in order to facilitate comparison with other data from the region. Free gas usually occurs in mud and sandy mud but is observed only when sediment thickness exceeds a certain threshold value, depending on the water depth of the area in question. Gassy sediments exist at all water depths from approx. 20 m in the coastal waters of the Kattegat to 360 m in the Skagerrak. In spite of the large difference in water depths, the depth of free gas below seabed varies only little within the region, indicating a relatively fast movement of methane in the gas phase towards the seabed compared to the rate of diffusion of dissolved methane. Seeps of old microbial methane occur in the northern Kattegat where a relatively thin cover of sandy sediments exists over shallow, glacially deformed Pleistocene marine sediments. Previous estimates of total methane escape from the area may be correct but the extrapolation of local methane seepage rate data to much larger areas on the continental shelf is probably not justified. Preliminary data on porewater chemistry were compared with the free gas depth contours in the Aarhus Bay area, which occasionally suffers from oxygen deficiency, in order to examine if acoustic gas mapping may be used for monitoring the condition of the bay.
Resumo:
Large-scale studies of ocean biogeochemistry and carbon cycling have often partitioned the ocean into regions along lines of latitude and longitude despite the fact that spatially more complex boundaries would be closer to the true biogeography of the ocean. Herein, we define 17 open-ocean biomes classified from four observational data sets: sea surface temperature (SST), spring/summer chlorophyll a concentrations (Chl a), ice fraction, and maximum mixed layer depth (maxMLD) on a 1° × 1° grid. By considering interannual variability for each input, we create dynamic ocean biome boundaries that shift annually between 1998 and 2010. Additionally we create a core biome map, which includes only the grid cells that do not change biome assignment across the 13 years of the time-varying biomes. These biomes can be used in future studies to distinguish large-scale ocean regions based on biogeochemical function.
Resumo:
In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001 - the PLEA project. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Habitats were mapped using a combination of towed GPS photo transects, aerial photography and expert knowledge. This data provides georeferenced information regarding the major features of each of the Point Lookout Dive Sites.
Resumo:
We used hyperspectral imaging to study short-term effects of bioturbation by lugworms (Arenicola marina) on the surficial biomass of microphytobenthos (MPB) in permeable marine sediments. Within days to weeks after the addition of a lugworm to a homogenized and recomposed sediment, the average surficial MPB biomass and its spatial heterogeneity were, respectively, 150 - 250% and 280% higher than in sediments without lugworms. The surficial sediment area impacted by a single medium-sized lugworm (~4 g wet weight) over this time-scale was at least 340 cm**2. While sediment reworking was the primary cause of the increased spatial heterogeneity, experiments with lugworm-mimics together with modeling showed that bioadvective porewater transport from depth to the sediment surface, as induced by the lugworm ventilating its burrow, was the main cause of the increased surficial MPB biomass. Although direct measurements of nutrient fluxes are lacking, our present data show that enhanced advective supply of nutrients from deeper sediment layers induced by faunal ventilation is an important mechanism that fuels high primary productivity at the surface of permeable sediments even though these systems are generally characterized by low standing stocks of nutrients and organic material.
Resumo:
Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.
Resumo:
A rock salt-lamprophyre dyke contact zone (sub-vertical, NE-SW strike) was investigated for its petrographic, mechanic and physical properties by means of anisotropy of magnetic susceptibility (AMS) and rock magnetic properties, coupled with quantitative microstructural analysis and thermal mathematical modelling. The quantitative microstructural analysis of halite texture and solid inclusions revealed good spatial correlation with AMS and halite fabrics. The fabrics of both lamprophyre and rock salt record the magmatic intrusion, "plastic" flow and regional deformation (characterized by a NW-SE trending steep foliation). AMS and microstructural analysis revealed two deformation fabrics in the rock salt: (1) the deformation fabrics in rock salt on the NW side of the dyke are associated with high temperature and high fluid activity attributed to the dyke emplacement; (2) On the opposite side of the dyke, the emplacement-related fabric is reworked by localized tectonic deformation. The paleomagnetic results suggest significant rotation of the whole dyke, probably during the diapir ascent and/or the regional Tertiary to Quaternary deformation.
Resumo:
Based on data from R.V. Pelagia, R.V. Sonne and R.V. Meteor multibeam sonar surveys, a high resolution bathymetry was generated for the Mozambique Ridge. The mapping area is divided into five sheets, one overview and four sub-sheets. The boundaries are (west/east/south/north): Sheet 1: 28°30' E/37°00' E/36°20' S/24°50' S; Sheet 2: 32°45' E/36°45' E/28°20' S/25°20' S; Sheet 3: 31°30' E/36°45' E/30°20' S/28°10' S; Sheet 4: 30°30' E/36°30' E/33°15' S/30°15' S; Sheet 5: 28°30' E/36°10' E/36°20' S/33°10' S. Each sheet was generated twice: one from swath sonar bathymetry only, the other one is completed with depths from ETOPO2 predicted bathymetry. Basic outcome of the investigation are Digital Terrain Models (DTM), one for each sheet with 0.05 arcmin (~91 meter) grid spacing and one for the entire area (sheet 1) with 0.1 arcmin grid spacing. The DTM's were utilized for contouring and generating maps. The grid formats are NetCDF (Network Common Data Form) and ASCII (ESRI ArcGIS exchange format). The Maps are formatted as jpg-images and as small sized PNG (Portable Network Graphics) preview images. The provided maps have a paper size of DIN A0 (1189 x 841 mm).
Resumo:
There are about 30 species of planktonic Foraminifera, as contrasted with the more than 4200 benthic species in the oceans of the world. Most of the planktonic species belong to the families Globigerinidae and Globorotaliidae. Of the 30 species, 9 occur in Antarctic and Subantarctic waters; however, none of these cold-water species are restricted to the Southern Ocean, except possibly the newly recognized Globorotalia cavernula (Be, 1967b). These species are distributed in broad zones of similar temperature in both the Northern and Southern Hemispheres. Hence, it is not possible to refer to these species as endemic to the Antarctic or Subantarctic, although some of them do appear in very high concentrations of 10 specimens/m**3 or more in the Antarctic regions. The plankton samples upon which the accompanying maps are based were collected between 1960 and 1965 on the research vessels Eltanin of the National Science Foundation (U.S. Antarctic Research Program), and Vema and Conrad of the Lamont Geological Observatory. All surface (0 m to 10 m) and vertical (0 m to 300 m) tows were obtained with plankton nets of uniform mesh size and material (NITEX202 = 202 µm mesh-aperture width) and were provided with flowmeters for quantitative readings of amounts of water filtered.
Resumo:
Based on data from R/V Sonne multibeam sonar surveys in 2005 a high resolution bathymetry was generated for the Mozambique Basin. The area covers approx. 466,475 sqkm. The mapping area is divided into four sheets with boundaries (west/east/south/north): Sheet I (north-west), 37:00/39:45/-24:00/-20:20; Sheet II (north-east), 39:45/42:30/-24:00/-20:20; Sheet III (south-west), 37:00/39:45/-27:40/-24:00; Sheet IV (south-east), 39:45/42:30/-27:40/-24:00. Basic outcome of the investigation are Digital Terrain Models (DTM), one for each sheet with 0.05 arcmin (~91 meter) grid spacing and one for the entire area with 0.1 arcmin grid spacing. The DTM's were utilized for contouring and generating maps. Moreover the measured bathymetry was combined and compared with GEBCO bathymetry and predicted bathymetry, derived from altimeter satellites. The provided maps have a paper size of DIN A0 (1188.9 x 841 mm).
Resumo:
Photogrammetric surveys have been made and maps drawn of a number of glaciers in the eastern Alps, among them the Waxeggkees in the Zillertal Alps of Tyrol, at approximately ten-year intervals since 1950. Terrestrial photogrammetry was used for the pictures taken in 1950, 1960, 1980, 1989 and 2000, while aerial photogrammetry was employed for the 1969 photo. These maps were subsequently used to calculate the changes in area, elevation and volume for elevational zones of 50 m. The numeric values are given in two tables. The illustration of surface changes in Waxeggkees is continued cartographically on 5 map sheets at the scale of 1 : 15.000 and a vertical interval of the contour lines of 50 m. Changes in glacier area are marked in light red to indicate a decrease in area, and in light blue for an increase. Changes in elevation can only be indicated indirectly, namely in the form of vertical interval bands, referring to the surface areas that arise due to the relocation of the contour lines, resulting from an elevational change. Decrease in elevation is indicated in red, increase in blue, on 100 m contour lines.