213 resultados para Zirconium particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two cores from the southern South China Sea contain discrete ash layers that mainly consist of rhyolithic glass shards. On the basis of the SPECMAP time scale, the ash layers were dated to ca. 74 ka, the age of the youngest Toba eruption in northern Sumatra. This link is supported by the chemical composition of the glass, which is distinct from volcanic glass supplied from the Philippines and the northern South China Sea, but is almost identical with the chemistry of the Toba ash. The youngest Toba ash layers in the South China Sea expand the previously known ash-fall zone over more than 1800 km to the east. The dispersal of ashes from Sumatra in both western and eastern directions indicates two contrasting wind directions and suggests that (1) the Toba eruption probably happened during the Southeast Asian summer monsoon season, and (2) the volume of erupted magma was larger than previously interpreted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution, size, mineral, and chemical compositions of ferromanganese micronodules (FMMNs) and chemical composition of host sediments were examined in a series of red clay samples with ages from Eocene to the present at Ocean Drilling Program Leg 199, Site 1216, south of the Molokai Fracture Zone in the Central Pacific Basin. The number of FMMNs changed drastically throughout the 40-m-long red clay intervals. FMMNs are abundant in the upper 9 m of core, decrease between 9 and 25 meters below seafloor (mbsf) with depth, and are very rare from 30 to 40 mbsf. Chemical composition of FMMNs showed high Mn/Fe ratios and Ni and Cu contents and a distinct positive Ce anomaly because of the existence of buserite. This suggests that FMMNs in the red clay from 25 mbsf to the top of the cored interval were deposited continuously in an oxic diagenetic bottom environment. The red clay below 30 mbsf with higher Mn contents contains few FMMNs but abundant tiny Mn particles within brown silicates coated by Fe (oxy-hydro)oxides. This indicates that the mode of manganese deposition changed between 25 and 30 mbsf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical fluxes of 239+240Pu and 241Am and temporal changes in their inventories in the northwestern Mediterranean Sea have been examined through high-resolution water column sampling coupled with direct measurements of the vertical flux of particle-bound transuranics using time-series sediment traps. Water column profiles of both radionuclides showed well-defined sub-surface maxima (2391240Pu between 100-400 m; 241Am at 100-200 m and 800 m), the depths of which are a result of the different biogeochemical scavenging behavior of the two radionuclides. Comparison of deep water column (0-2,000 m) transuranic inventories with those derived from earlier measurements demonstrate that the total 2391240Pu inventory had not substantially changed between 1976-1990 whereas 241Am had decreased by approximately 24%. Enhanced scavenging of 241Am and a resultant, more rapid removal from the water column relative to 239+240Pu was also supported by the observation of elevated Am/Pu activity ratios in sinking particles collected in sediment traps at depth. Direct measurements of the downward flux of particulate 239+240Pu and 241Am compared with transuranic removal rates derived from observed total water column inventory differences over time, show that particles sinking out of deep waters (1,000-2,000 m) could account for 26-72% of the computed total annual 239+240Pu loss and virtually all of the 241Am removal from the water column. Upper water column (0-200 m) residence times based on direct flux measurements ranged from 20-30 yr for 239+240Pu and 5-10 yr for 241Am. The observation that 241Am/239+240Pu activity ratios in unfiltered Mediterranean seawater are six times lower than those in the north Pacific suggests the existence of a specific mechanism for enhanced scavenging and removal of 241Am from the generally oligotrophic waters of the open Mediterranean. It is proposed that atmospheric inputs of aluminosilicate particles transported by Saharan dust events which frequently occur in the Mediterranean region could enhance the geochemical scavenging and resultant removal of 241Am to the sediments.