195 resultados para WATER CONSUMPTION
Resumo:
Concentrations of dissolved organic carbon (DOC) and nitrogen (DON) were measured during early austral Spring 1992 at a number of stations along the 6°W meridian between 47° and 60°S. This included the Polar Front in the north, the zone of melting sea-ice in the south, and waters of the Antarctic Circumpolar Current in between. Concentrations of DOC were low in deep water (34-38 ?M) with generally similar or slightly higher values in the surface mixed layer (38-55 ?M). DOC:DON ratios are wider in surface water than in deep water, i.e. surface accumulations contain relatively C-rich dissolved organic matter. The highly variable distribution of the surface DOC was not related to hydrographic or biotic features (fronts, plankton development) indicating the lability and transient occurrence of this material. Growth rates of bacteria were determined in subsamples from 51 0.8-?m-filtered batches of seawater incubated in the dark at in-situ temperature. Thymidine and leucine uptake and bacterial biomass change as well as changes in dissolved organic carbon in the batches, and oxygen consumption in parallel incubations correlated linearly over 2 weeks of incubation which allowed extrapolation to in-situ conditions. Bacterial growth in these experiments depended strongly on the amount of initial DOC. Growth in water from greater depth (1000 m) containing 38 ?M DOC was minimal, as were DOC-decrease and oxygen consumption. Higher rates were observed in surface water slightly enriched with DOC, and highest rates in surface water amended with DOC-rich melted sea ice. Bacterial growth efficiencies (biomass C-increase vs DOC consumed) were about 30%. The experiments showed that at least 40-60% of the DOC in excess of deep water concentrations was available to bacteria.
Resumo:
Anaerobic methane oxidation (AMO) was characterized in sediment cores from the Blake Ridge collected during Ocean Drilling Program (ODP) Leg 164. Three independent lines of evidence support the occurrence and scale of AMO at Sites 994 and 995. First, concentration depth profiles of methane from Hole 995B exhibit a region of upward concavity suggestive of methane consumption. Diagenetic modeling of the concentration profile indicates a 1.85-m-thick zone of AMO centered at 21.22 mbsf, with a peak rate of 12.4 nM/d. Second, subsurface maxima in tracer-based sulfate reduction rates from Holes 994B and 995B were observed at depths that coincide with the model-predicted AMO zone. The subsurface zone of sulfate reduction was 2 m thick and had a depth integrated rate that compared favorably to that of AMO (1.3 vs. 1.1 nmol/cm**2/d, respectively). These features suggest close coupling of AMO and sulfate reduction in the Blake Ridge sediments. Third, measured d13CH4 values are lightest at the point of peak model-predicted methane oxidation and become increasingly 13C-enriched with decreasing sediment depth, consistent with kinetic isotope fractionation during bacterially mediated methane oxidation. The isotopic data predict a somewhat (60 cm) shallower maximum depth of methane oxidation than do the model and sulfate reduction data.