324 resultados para VREDEFORT DOME


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have proposed a method of deducing the chemical compounds found in deep polar ice cores by analyzing the balance between six major ions (Cl-, NO3-, SO4**2-, Na+, Mg2+, and Ca2+). The method is demonstrated for the Holocene and last glacial maximum regions of the Dome Fuji and GRIP ice cores. The dominant compounds depend only on the ion balance and the sequence of chemical reactions. In priority order, the principle salts are calcium sulfate, other sulfates, nitrate, chloride, and carbonate. The chemical abundances deduced by this method agree well with the results of Raman spectroscopy on individual salt inclusions. The abundances in the ice cores are shown to reflect differences in climatic periods (the acidic environment of the Holocene versus the reductive environment of the last glacial maximum) and regional conditions (the marine environment of Antarctica versus the continental environment of Greenland).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tentative age scale (EDC1) for the last 45 kyr is established for the new 788 m EPICA Dome C ice core using a simple ice flow model. The age of volcanic eruptions, the end of the Younger Dryas event, and the estimated depth and age of elevated 10Be, about 41 kyr ago were used to calibrate the model parameters. The uncertainty of EDC1 is estimated to ±10 yr for 0 to 700 yr BP, up to ±200 yr back to 10 kyr BP, and up to ±2 kyr back to 41 kyr BP. The age of the air in the bubbles is calculated with a firn densification model. In the Holocene the air is about 2000 yr younger than the ice and about 5500 yr during the last glacial maximum.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EPICA (European Project for Ice Coring in Antarctica) Dome C drilling in East Antarctica has now been completed to a depth of 3260 m, at only a few meters above bedrock. Here we present the new EDC3 chronology, which is based on the use of 1) a snow accumulation and mechanical flow model, and 2) a set of independent age markers along the core. These are obtained by pattern matching of recorded parameters to either absolutely dated paleoclimatic records, or to insolation variations. We show that this new time scale is in excellent agreement with the Dome Fuji and Vostok ice core time scales back to 100 kyr within 1 kyr. Discrepancies larger than 3 kyr arise during MIS 5.4, 5.5 and 6, which points to anomalies in either snow accumulation or mechanical flow during these time periods. We estimate that EDC3 gives accurate event durations within 20% (2 sigma) back to MIS11 and accurate absolute ages with a maximum uncertainty of 6 kyr back to 800 kyr.