26 resultados para University of Turin (Italy)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of pollen analytical data for the reconstruction of the natural conditions and their changes caused by human impact in prehistorical and historical times is beyond all doubt. Pollen analysis can, however, be hampered by poor pollen preservation and low pollen concentrations. As an example pollen assemblages from excavation areas near Pompeii (see doi:10.1594/PANGAEA.777531) and from the Old Botanical Garden of the University of Göttingen are discussed. A pollen diagram (see doi:10.1594/PANGAEA.820590) from the site Höllerer See in Austria (N of the city of Salzburg) demonstrates the intensive agricultural influence on the vegetation of the area during Roman and Medieval times. Human influence was much weaker during the Iron and the Bronze ages. There is no indication of human impact on the vegetation during the Migration period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abrupt climate changes from 18 to 15 thousand years before present (kyr BP) associated with Heinrich Event 1 (HE1) had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). We calculated mega-biomes from the plant-functional types (PFTs) generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America. The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote effects of a Heinrich event under a glacial climate background.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated changes in tropical climate and vegetation cover associated with abrupt climate change during Heinrich Event 1 (HE1, ca. 17.5 ka BP) using two different global climate models: the University of Victoria Earth System-Climate Model (UVic ESCM) and the Community Climate System Model version 3 (CCSM3). Tropical South American and African pollen records suggest that the cooling of the North Atlantic Ocean during HE1 influenced the tropics through a southward shift of the rain belt. In this study, we simulated the HE1 by applying a freshwater perturbation to the North Atlantic Ocean. The resulting slowdown of the Atlantic Meridional Overturning Circulation was followed by a temperature seesaw between the Northern and Southern Hemispheres, as well as a southward shift of the tropical rain belt. The shift and the response pattern of the tropical vegetation around the Atlantic Ocean were more pronounced in the CCSM3 than in the UVic ESCM simulation. For tropical South America, opposite changes in tree and grass cover were modeled around 10° S in the CCSM3 but not in the UVic ESCM. In tropical Africa, the grass cover increased and the tree cover decreased around 15° N in the UVic ESCM and around 10° N in the CCSM3. In the CCSM3 model, the tree and grass cover in tropical Southeast Asia responded to the abrupt climate change during the HE1, which could not be found in the UVic ESCM. The biome distributions derived from both models corroborate findings from pollen records in southwestern and equatorial western Africa as well as northeastern Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a 20-year long database of GPS data collected by geodetic surveys carried out over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Data have been convertedi nto the international ASCII compressed RINEX standard in order to be imported and processed by any GPS analysis software. Database is provided with an explorer software for navigating into the dataset by spatial (GIS) and temporal queries.