20 resultados para Time-lagged Response To Deforestation
Resumo:
The paleoenvironmental conditions through MIS 15-9 at the Mediterranean Ocean Drilling Program (ODP) Site 975 were interpreted by high resolution study of calcareous plankton assemblages compared with available d18O and d13C records and high resolution paleoclimate proxies from the Atlantic Ocean. Sea Surface Temperatures (SSTs) have been estimated from planktonic foraminiferal assemblages using the artificial neural networks method. Calcareous plankton varied dominantly on a glacial-interglacial scale as testified by the SST record, foraminiferal diversity, total coccolith abundance and changes in warm-water calcareous nannofossil taxa. A general increase in foraminiferal diversity and of total coccolith abundance is observed during interglacials. Warmest SSTs are reached during MIS 11, while MIS 12 and MIS 10 represent the coldest intervals of the studied record. During MIS 12, one of the most extreme glacials of the last million years, occurrence of Globorotalia inflata and of neogloboquadrinids indicates a shoaling of the interface between Atlantic inflowing and Mediterranean outflowing waters. Among calcareous nannofossils the distribution of Gephyrocapsa margereli-G. muellerae > 4 µm also supports a reduced Atlantic-Mediterranean exchange during MIS 12. Superimposed on glacial-interglacial variability, six short-terms coolings are recognized during MIS 12 and 10, which appear comparable in their distribution and amplitude to the Heinrich - type events documented in the Atlantic Ocean in the same interval. During these H-type events, N. pachyderma (s) and G. margereli-G. muellerae > 4 µm increase as a response to the enhanced inflow of cold Atlantic water into the Mediterranean via the Strait of Gibraltar. Mediterranean surface water hydrography appears to have been most severely affected at Termination V during the H-type event Ht4, possibly as a response to a large volume of Atlantic meltwater inflow via the Strait of Gibraltar and/or to freshwater/terrigenous input deriving from local mountain glaciers. Three additional SST coolings are recorded through MIS 14-16, but these are not well correlated with Heinrich - type events documented in the Atlantic Ocean in the same interval; during these cooling episodes only the subpolar Turborotalita quinqueloba increases. These results highlight the sensitive response of the Mediterranean basin to millennial-scale climate variations related to Northern Hemisphere ice-sheet instability and support the hypothesis that the tight connection between high latitude climate dynamics and Mediterranean sea surface water features can be traced through the Middle Pleistocene.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Phenotypic plasticity describes the phenotypic adjustment of the same genotype to different environmental conditions and is best described by a reaction norm. We focus on the effect of ocean acidification (OA) on inter - and intraspecific reaction norms of three globally important phytoplankton species (Emiliania huxleyi, Gephyrocapsa oceanica, Chaetoceros affinis). Despite significant differences in growth rates between the species, they all showed a high potential for phenotypic buffering (no significant difference in growth rates between ambient and high CO2 condition). Only three coccolithophore genotypes showed a reduced growth in high CO2. Largely diverging responses to high CO2 of single coc-colithophore genotypes compared to the respective mean species responses, however, raise the question if an extrapolation to the population level is possible from single genotype experiments. We therefore compared the mean response of all tested genotypes to a total species response comprising the same genotypes, which was not significantly different in the coccolithophores. Assessing species reac-tion norm to different environmental conditions on short time scale in a genotype-mix could thus reduce sampling effort while increasing predictive power.