248 resultados para Time Scale


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variations in the 18O/16O ratios of marine fossils and microfossils record changes in seawater 18O/16O and temperature and form the basis for global correlation. Relying on previous compilations and new data, this chapter presents oxygen isotope curves for Phanerozoic foraminifera, mollusks, brachiopods, and conodonts, and for Precambrian limestones, dolostones, and cherts. Periodic oxygen-isotopic variations in deep-sea foraminifera define marine isotope stages that, when combined with biostratigraphy and astronomical tuning, provide a late Cenozoic chronostratigraphy with a resolution of several thousand years. Oxygen isotope events of early Cenozoic, Mesozoic, and Paleozoic age serve as chemostratigraphic markers for regional and global correlation. Precambrian oxygen isotope stratigraphy, however, is hampered by the lack of unaltered authigenic marine sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, we construct a robust astronomically calibrated age model for the middle Eocene to early Oligocene interval (31-43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the Middle Eocene Climate Optimum and the Eocene/Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new time scale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and -U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently we applied orbital tuning of the records to the La2011 orbital solution. The resulting new time scale revises and refines the existing orbitally tuned age model and the Geomagnetic Polarity Time Scale from 31 to 43 Ma. Our newly defined absolute age for the Eocene/Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano (Italy) global stratotype section and point. Our compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during very long eccentricity cycle minima around 35.5 Ma, 38.3 Ma and 40.1 Ma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Monthly measurements of pH, alkalinity and oxygen over two years (February 1998-February 2000) at the Dyfamed site in the central zone of the Ligurian-Provençal Basin of the Mediterranean made it possible to assess the vertical distributions (5-2000 m) and the seasonal variations of these properties. Alkalinity varies linearly with salinity between surface water and the Levantine Intermediate Water (marked by a maximum of temperature and salinity). In deep water, total alkalinity is also correlated linearly to salinity, but the slope of the regression line is 15% less. In surface water, the pH at 25°C varies between 7.91 and 8.06 on the total proton scale depending upon the season. The lowest values are observed in winter, the highest in spring and in summer. These variations are primarily due to biological production. The pH goes through a minimum around 150-200 m and a small maximum below the intermediate water. The total dissolved inorganic carbon content (deduced from pH and alkalinity) is variable in surface water (2205-2310 ?mol/kg) and has a maximum in intermediate water, which is related to the salinity maximum. Normalized total inorganic carbon at a constant salinity is strongly negatively correlated with pH at 25°C. The fugacity of CO2, (fCO2) varies between 320 and 430 ?atm in surface water, according to the season. Below the seasonal thermocline, the maximum fCO2 (about 410 ?atm) is located around 150-200 m. The presence of a minimum of oxygen in the intermediate water of this area has been observed for several years, but our measurements made it possible to specify the relationship between oxygen and salinity in deep water. Data from the intense vertical mixing during the winters of 1999 and 2000 were used to calculate the oxygen quantity exchanged with the atmosphere during these periods. The estimated quantity of oxygen entering the Mediterranean Sea exceeds that deduced from exchange coefficients calculated with the formula of Wanninkhof and McGillis. During the vertical mixing in the 1999 winter, fCO2 in surface water was on average below equilibrium with atmospheric fCO2, thus implying that CO2 was entering the sea. However, on this time scale, even with high exchange coefficients, the estimated CO2 uptake had no significant influence on the inorganic carbon content in the water column.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deep Sea Drilling Project Site 577 on Shatsky Rise (North Pacific Ocean) recovered a series of cores at three holes that contain calcareous nannofossil ooze of latest Cretaceous (late Maastrichtian) through early Eocene age. Several important records have been generated using samples from these cores, but the stratigraphy has remained outdated and confusing. Here we revise the stratigraphy at Site 577. This includes refining several age datums, realigning cores in the depth domain, and placing all stratigraphic markers on a current time scale. The work provides a template for appropriately bringing latest Cretaceous and Paleogene data sets at old drill sites into current paleoceanographic literature for this time interval. While the Paleocene Eocene Thermal Maximum (PETM) lies within core gaps at Holes 577* and 577A, the sedimentary record at the site holds other important events and remains crucially relevant to understanding changes in oceanographic conditions from the latest Cretaceous through early Paleogene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A general study of biogeochemical processes (DYNAPROC cruise) was conducted in May 1995 at a time-series station in the open northwestern Mediterranean Sea where horizontal advection was weak. Short-term variations of the vertical distributions of pico- and nanophytoplankton were investigated over four 36-h cycles, along with parallel determinations of metabolic CO2 production rates and amino acid-containing colloid (AACC) concentrations at the chlorophyll maximum depth. The vertical (0-1000-m depth) distributions of (i) AACC, (ii) suspended particles and (iii) metabolic CO2 production rate were documented during the initial and final stages of these 36-h cycles. This study was concerned with diel vertical migration (DVM) of zooplankton, which provided periodic perturbations. Accordingly, the time scale of the experimental work varied from a few hours to a few days. Although all distributions exhibited a periodic behaviour, AACC distributions were generally not linked to diel vertical migrations. In the subsurface layer, Synechococcus made the most abundant population and large variations in concentration were observed both at day and at night. The corresponding integrated (over the upper 90 m) losses of Synechococcus during one night pointed to a potential source of exported organic matter amounting to 534 mg C/m**2. This study stresses the potential importance of organic matter export from the euphotic zone through the daily grazing activity of vertically migrating organisms, which would not be accounted for by measurements at longer time scales. The metabolic CO2 production exhibited a peak of activity below 500 m that was shifted downward, apparently in a recurrent way and independently of the vertical distributions of AACC or of suspended particulate material. To account for this phenomenon, a 'sustained wave train» hypothesis is proposed that combines the effect of the diel superficial faecal pellet production by swarming migrators and the repackaging activity of the nonmigrating midwater populations. Our results confirm the recent finding that the particulate compartment is not the major source of the observed instantaneous remineralisation rate and shed a new light on the fate of organic matter in the aphotic zone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the western North Atlantic, warm and saline water is brought by the North Atlantic Current (NAC) from the subtropics into the subpolar gyre. Four inverted echo sounders with high precision pressure sensors (PIES) were moored between 47°40' N and 52°30' N to study the main pathways of the NAC from the western into the eastern basin. The array configuration that forms three segments (northern, central, and southern) allows partitioning of the NAC and some assessment of NAC flow paths through the different Mid-Atlantic Ridge fracture zones. We exploit the correlation between the NAC transport measured between 2006 and 2010 and the geostrophic velocity from altimeter data to extend the time series of NAC transports to the period from 1992 to 2013. The mean NAC transport over the entire 21 years is 27 ± 5 Sv, consisting of 60% warm water of subtropical origin and 40% subpolar water. We did not find a significant trend in the total transport time series, but individual segments had opposing trends, leading to a more focused NAC in the central subsection and decreasing transports in the southern and northern segments. The spectral analysis exhibits several significant peaks. The two most prominent are around 120 days, identified as the time scale of meanders and eddies, and at 4-9 years, most likely related to the NAO. Transport composites for the years of highest and lowest NAO indices showed a significantly higher transport (+2.9 Sv) during strong NAO years, mainly in the southern segment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dataset characterizes the evolution of western African precipitation indicated by marine sediment geochemical records in comparison to transient simulations using CCSM3 global climate model throughout the Last Interglacial (130-115 ka). It contains (1) defined tie-points (age models), newly published stable isotopes of benthic foraminifera and Al/Si log-ratios of eight marine sediment cores from the western African margin and (2) annual and seasonal rainfall anomalies (relative to pre-industrial values) for six characteristic latitudinal bands in western Africa simulated by CCSM3 (two transient simulations: one non-accelerated and one accelerated experiment).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dust can affect the radiative balance of the atmosphere by absorbing or reflecting incoming solar radiation and it can be a source of micronutrients, such as iron, to the ocean. It has been suggested that production, transport, and deposition of dust is influenced by climatic changes on glacial-interglacial timescales. Here we present a high-resolution aeolian dust record from the EPICA Dome C ice core in East Antarctica, which provides an undisturbed climate sequence over the last eight climatic cycles. We find that there is a significant correlation between dust flux and temperature records during glacial periods that is absent during interglacial periods. Our data suggests that dust flux is increasingly correlated with Antarctic temperature as climate becomes colder. We interpret this as progressive coupling of Antarctic and lower latitudes climate. Limited changes in glacial-interglacial atmospheric transport time Mahowald et al. (1999, doi:10.1029/1999JD900084), Jouzel et al. (2007, doi:10.1126/science.1141038), and Werner et al. (2002, doi:10.1029/2002JD002365) suggest that the sources and lifetime of dust are the major factors controlling the high glacial dust input. We propose that the observed ~25-fold increase in glacial dust flux over all eight glacial periods can be attributed to a strengthening of South American dust sources, together with a longer atmospheric dust particle life-time in the upper troposphere resulting from a reduced hydrological cycle during the ice ages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In an attempt to determine the helium and neon isotopic composition of the lower oceanic crust, we report new noble gas measurements on 11 million year old gabbros from Ocean Drilling Program site 735B in the Indian Ocean. The nine whole rock samples analyzed came from 20 to 500 m depth below the seafloor. Helium contents vary from 3.3*10**-10 to 2.5*10**-7 ccSTP/g by crushing and from 5.4*10**-8 to 2.4*10**-7 ccSTP/g by melting. 3He/4He ratios vary between 2.2 and 8.6 Ra by crushing and between 2.9 and 8.2 by melting. The highest R/Ra ratios are similar to the mean mid-ocean ridge basalt (MORB) ratio of 8+/-1. The lower values are attributed to radiogenic helium from in situ alüha-particle production during uranium and thorium decay. Neon isotopic ratios are similar to atmospheric ratios, reflecting a significant seawater circulation in the upper 500 m of exposed crust at this site. MORB-like neon, with elevated 20Ne/22Ne and 21Ne/22Ne ratios, was found in some high temperature steps of heating experiments, but with very small anomalies compared to air. These first results from the lower oceanic crust indicate that subducted lower oceanic crust has an atmospheric 20Ne/22Ne ratio. Most of this neon must be removed during the subduction process, if the ocean crust is to be recirculated in the upper mantle, otherwise this atmospheric neon will overwhelm the upper mantle neon budget. Similarly, the high (U+Th)/3He ratio of these crustal gabbros will generate very radiogenic 4He/3He ratios on a 100 Ma time scale, so lower oceanic crust cannot be recycled into either MORB or oceanic island basalt without some form of processing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of distinct assemblages containing a high level of regional endemic species. Species richness was most strongly positively associated with the historical climatic conditions and negatively associated with severity of recent disturbance (treefalls) and current climatic conditions. Assemblage composition was associated with latitude and current and historical climatic conditions. Our results suggest that distributional patterns of flightless ground beetles are not only likely to be associated with factors that change with elevation (current climatic conditions), but also factors that are independent of elevation (recent disturbance and historical climatic conditions). Variation in historical vegetation stability explained both species richness and assemblage composition patterns, probably reflecting the significance of upland refugia at a geographic time scale. These findings are important for conservation management as upland habitats are under threat from climate change.