37 resultados para Thales, ca. 634-ca. 546 B.C.
Resumo:
The episodic occurrence of debris flow events in response to stochastic precipitation and wildfire events makes hazard prediction challenging. Previous work has shown that frequency-magnitude distributions of non-fire-related debris flows follow a power law, but less is known about the distribution of post-fire debris flows. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and cumulative distribution functions to compare volumes of post-fire debris flows to non-fire-related debris flows. Due to the large number of events required to parameterize frequency-magnitude distributions, and the relatively small number of post-fire event magnitudes recorded in the literature, we collected data on 73 recent post-fire events in the field. The resulting catalog of 988 debris flow events is presented as an appendix to this article. We found that the empirical cumulative distribution function of post-fire debris flow volumes is composed of smaller events than that of non-fire-related debris flows. In addition, the slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, evidence that differences in the post-fire environment tend to produce a higher proportion of small events. We propose two possible explanations: 1) post-fire events occur on shorter return intervals than debris flows in similar basins that do not experience fire, causing their distribution to shift toward smaller events due to limitations in sediment supply, or 2) fire causes changes in resisting and driving forces on a package of sediment, such that a smaller perturbation of the system is required in order for a debris flow to occur, resulting in smaller event volumes.
Resumo:
A study of the distribution, dispersal and composition of surficial sediments in the Strait of Georgia, B.C., has resulted in the understanding of basic sedimentologic conditions within this area. The Strait of Georgia is: a long, narrow, semi-enclosed basin with a restricted circulation and a single, main, sediment source. The Fraser. River supplies practically all the sediment now being deposited in the Strait of Georgia, the bulk of it during the spring and summer freshet. This river is building a delta into the Strait from the east side near the south end. Ridges of Pleistocene deposits within the Strait and Pleistocene material around the margins, like bedrock exposures, provide local sources of sediment of only minor importance. Rivers and streams other than the Fraser contribute insignificant quantities of sediment to the Strait. Sandy sediments are concentrated in the vicinity of the delta, and in the area to the south and southeast. Mean grain size decreases from the delta toward the northwest along the axis of the Strait, and basinwards from the margins. Silts and clays are deposited in deep water west and north of the delta front, and in deep basins northwest of the delta. Poorly sorted sediments containing a gravel component are located near tidal passes, on the Vancouver Island shelf area, on ridge tops within the Strait, and with sandy sediments at the southeastern end of the study area. The Pleistocene ridges are areas of non-deposition, having at most a thin veneer of modern mud on their crests and upper flanks. The southeastern end of the study area contains a thick wedge of shandy sediment which appears to be part of an earlier delta of the Fraser River. Evidence suggests that it is now a site of active submarine erosion. Sediments throughout the Strait are compositionally extremely similar, with-Pleistocene deposits of the Fraser River drainage basin providing the principal, heterogeneous source. Gravels and coarse sands are composed primarily of lithic fragments, dominantly of dioritic to granodloritlc composition. Sand fractions exhibit increasing simplicity of mineralogy with decreasing grain-size. Quartz, felspar, amphibole and fine-grained lithic fragments are the dominant constituents of the finer sand grades. Coarse and medium silt fractions have compositions similar to the fine sands. Fine silts show an increase in abundance of phyllosilicate material, a feature even more evident in the clay-size fractions on Montmorillonite, illite, chlorite, quartz and feldspar are the main minerals in the coarse clay fraction, with minor mixed-layer clays and kaolinite. The fine clay fraction is dominated by montmorillonite, with lesser amounts of illite and chlorite. The sediments have high base-exchange capacities, related to a considerable content of montmorillonite. Magnesium is present in exchange positions in greater quantity in Georgia Strait sediments than in sediments from the Fraser River, indicating a preferential uptake of this element in the marine environment. Manganese nodules collected from two localities in the Strait imply slow sediment accumulation rates at these sites. Sedimentation rates on and close to the delta, and in the deep basins to the northwest, are high.
Resumo:
Chemical (Sr, Mg) and isotopic (d18O, 87Sr/86Sr) compositions of calcium carbonate veins (CCV) in the oceanic basement were determined to reconstruct changes in Sr/Ca and Mg/Ca of seawater in the Cenozoic. We examined CCV from ten basement drill sites in the Atlantic and Pacific, ranging in age between 165 and 2.3 Ma. Six of these sites are from cold ridge flanks in basement <46 Ma, which provide direct information about seawater composition. CCV of these young sites were dated, using the Sr isotopic evolution of seawater. For the other sites, temperature-corrections were applied to correct for seawater-basement exchange processes. The combined data show that a period of constant/low Sr/Ca (4.46 - 6.22 mmol/mol) and Mg/Ca (1.12 - 2.03 mol/mol) between 165 and 30 Ma was followed by a steady increase in Mg/Ca ratios by a factor of three to modern ocean composition. Mg/Ca - Sr/Ca relations suggest that variations in hydrothermal fluxes and riverine input are likely causes driving the seawater compositional changes. However, additional forcing may be involved in explaining the timing and magnitude of changes. A plausible scenario is intensified carbonate production due to increased alkalinity input to the oceans from silicate weathering, which in turn is a result of subduction-zone recycling of CO2 from pelagic carbonate formed after the Cretaceous slow-down in ocean crust production rate.
Resumo:
A multi-proxy palaeoecological investigation including pollen, plant macrofossil, radiocarbon and sedimentological analyses, was performed on a small mountain lake in the Eastern Pyrenees. This has allowed the reconstruction of: (1) the vegetation history of the area based on five pollen diagrams and eight AMS14C dates and (2) the past lake-level changes, based on plant macrofossil, lithological and pollen analysis of two stratigraphical transects correlated by pollen analysis. The palaeolake may have appeared before the Younger Dryas; the lake-level was low and the vegetation dominated by cold steppic grasslands. The lake-level rose to its highest level during the Holocene in the Middle Atlantic (at ca. 5060±45 b.p.). Postglacial forests (Quercetum mixtum and Abieto-Fagetum) developed progressively in the lower part of the valley, while dense Pinus uncinata forests rapidly invaded the surroundings of the mire and remained the dominant local vegetation until present. The observed lowering of the lake levels during the Late Atlantic and the Subboreal (from 5060 ± B.P. to 3590±40 b.p.) was related to the overgrowth of the mire. The first obvious indications of anthropogenic disturbances of the vegetation are recorded at the Atlantic/Subboreal boundary as a reduction in the forest component, which has accelerated during the last two millennia.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
a) In der horizontalen Verbreitung sind die vorwiegend kalkschaligen Benthos-Foraminiferen im Untersuchungsgebiet auf zwei Faciesbereiche verteilt: 1. Eine sandige Facies mit stärkeren Temperatur- und Salzgehaltschwankungen; Wasseroberfläche t = 2O-17°C, Salzgehalt nie über 32 per mil, Meerestiefe 30 bis 92 m. 2. Schlick-Facies mit zum Teil feinsandigen Beimengungen. Temperatur- und Salzgehaltschwankungen sind geringer; Wasseroberfläche t = ca. 4O-15° C, Salzgehalt bis 34 per mil, Meerestiefe 135-548 m. b) Einige Stoßröhren-Proben (Station 18, 21, 27, 28) zeigen in ihrer vertikalen Verbreitung auffallende Faunenunterschiede. c) Im Profil des Lotkerns wechseln in der Foraminiferenfauna Bolivinen- und Cassidulinen-Nonioninen-Provinzen miteinander ab. Die Profile der beiden tiefsten Stoßröhren-Kerne (Station 23, 26; s. Tab. I) stimmen in ihrer Mikrofauna mit der des oberen Teils des Lotkerns (s. Tab. 4) überein. d) Die unter b und C angefuührten Faunenwechsel werden auf langperiodische Klimaerwärmungen im skandinavischen Raum und den damit verbundenen Anstieg des Meeresspiegels zurückgeführt. e) Der Lotkern kann mit Hilfe von Untersuchungsergebnissen aus seiner näheren Umgebung (Bohuslän, Oslofjord) nur bedingt in ein stratigraphisches, durch Megafossilien belegtes Schema eingefügt werden, da er nach unten durch die Mikrofauna keine echte Begrenzung aufweist. Durch die Einwanderung mehrerer Foraminiferenarten mit boreal-lusitanischer Verbreitung in die Untersuchungsgebiete wird der Lotkern in die Isocardia-Absätze (Atlanticum-oberes Subboreal) eingegliedert. f) Aus einer Tabelle von PRATJE(1940) kann entnommen werden, daß dieser Zeitabschnitt nach DE GEER etwa um 5000 v.Chr. beginnt. Danach beträgt die geringste Sedimentation, die in dem Kerngebiet nach dieser Zeitrechnung möglich ist, bei einer Eindringtiefe des Lots von 10 m ungefähr 1,40 m pro Jahrtausend. Wahrscheinlich wird dieses Maß etwas größer sein.
Resumo:
Major- and trace-element analyses, mineral chemistry, and Sr-Nd isotopic determinations were obtained on representative igneous rocks drilled from the Nankai accretionary complex (Site 808) during Ocean Drilling Program Leg 131. For the first time, the oceanic basement of the subducting plate below an accretionary prism has been reached. The Nankai Trough basement was encountered at a depth of 1289.9 mbsf and a total of 37.1 m of igneous rocks, middle Miocene (15.6 Ma) in age, was penetrated. Two main lithological units have been distinguished from the top downward; sill-like rocks (Unit I: Cores 105, 106, 107) and pillow lavas (Unit II: Core 108). Basalts are predominantly nonvesicular, hypocrystalline, aphyric to slightly phyric with intersertal to intergranular textures. Alteration is generally slight to moderate. All the basaltic rocks are cut by ramifying veins of varying widths. Secondary mineral assemblages (including vein fillings) are typical of submarine alteration and zeolite to low greenschist facies metamorphism. The order of crystallization of primary minerals is: olivine, plagioclase, clinopyroxene. This, together with mineral chemistry, characterized by forsteritic olivine (Fo 84-85), highly anorthitic Plagioclase (up to An 90), and in particular the composition of clinopyroxene, are typical of normal mid-ocean ridge basalts (MORB). In terms of Zr/Y (2.9-3.8) and Zr/Nb (21-58), all the analyzed samples plot in the normal MORB field. The chondrite-normalized REE patterns confirm the close affinity with normal MORB type (LaN/SmN: 0.6-0.8). Note that such magmatism does not reveal any evidence of subduction-related geochemical components. The 87Sr/86Sr isotopic ratios range from 0.70339 in pillow lavas to 0.70317 in the least-altered basalts of sill units (ratios reduced to 0.70265-0.70271 by HC1 2.5 N hot leaching), whereas 143Nd/144Nd ratios are 0.51314-0.51326. These values conform with those of normal MORB. Stratigraphy, petrography, and geochemistry of the basaltic rocks recovered at Site 808 appear very similar to those from the Shikoku Basin basement (particularly Sites 442 and 443, DSDP Leg 58), analogously identified as normal MORB.