40 resultados para TIME-VARIATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present measurements of the maximum diameter of the planktonic foraminifer Neogloboquadrina pachyderma sin. from six sediment cores (Ocean Drilling Program sites 643, 644, 907, 909, 985 and 987) from the Norwegian-Greenland Sea. Our data show a distinct net increase in mean shell size of N. pachyderma sin. at all sites during the last 1.3 Ma, with largest shell sizes reached after 0.4 Ma. External factors such as glacial-interglacial variability and carbonate dissolution alone cannot account for the observed variation in mean shell size of N. pachyderma sin. We consider the observed shell size increase to mirror an evolutionary trend towards better adaptation of N. pachyderma sin. to the cold water environment after 1.1-1.0 Ma. Probably, the Mid Pleistocene climate shift and the associated change of amplitude and frequency of glacial-interglacial fluctuations have triggered the evolution of this planktonic foraminifer. Oxygen and carbon stable isotope analyses of different shell size classes indicate that the observed shell size increase could not be explained by the functional concept that larger shells promote increasing sinking velocities during gametogenesis. For paleoceanographic reconstructions, the evolutionary adaptation of Neogloboquadrina pachyderma sin. to the cold water habitat has significant implications. Carbonate sedimentation in highest latitudes is highly dependent on the presence of this species. In the Norwegian-Greenland Sea, carbonate-poor intervals before 1.1 Ma are, therefore, not necessarily related to severe glacial conditions. They are probably attributed to the absence of this not yet polar-adapted species. Further, transfer function and modern analog techniques used for the reconstruction of surface water conditions in high latitudes could, therefore, contain a large range of errors if they were applied to samples older than 1.1-1.0 Myrs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report well-dated Late Cretaceous and Early Tertiary precessional climatic cycles, recorded by rhythmic carbonate maxima and minima in South Atlantic deep sea sites. Spectral analyses of digitized sediment color, a suitable carbonate proxy, show prominent regularities in the spacing marl-carbonate beds. Magnetostratigraphic dating over a number of magnetic chrons constrains the duration of the cycles, which can be detected over at least 20 Myr of sedimentation at 7 coring locations. Their mean absolute period of 23.5 +/- 4.4kyr agrees closely with the predicted late Cretaceous precessional period of 20.8 kyr. Because they can be matched to a physical forcing mechanism with a known repeat time, the cycles offer a new high-resolution tool to measure rates of climate change before and after the Cretaceous-Tertiary (K/T) boundary. From counts of carbonate cycles, we derive the position of the K/T boundary within C29R at 350 kyr after the base of the reversal. The constancy of cycle thickness (linearly related to sedimentation rate) and amplitude up to the "boundary clay" does not give evidence for climate instability preceding the boundary. Orbital chronometry records a step-function decrease in sediment accumulation rate at the Cretaceous-Tertiary boundary that is consistent with a geologically instantaneous event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicted future CO2 levels can affect reproduction, growth, and behaviour of many marine organisms. However, the capacity of species to adapt to predicted changes in ocean chemistry is largely unknown. We used a unique field-based experiment to test for differential survival associated with variation in CO2 tolerance in a wild population of coral-reef fishes. Juvenile damselfish exhibited variation in their response to elevated (700 µatm) CO2 when tested in the laboratory and this influenced their behaviour and risk of mortality in the wild. Individuals that were sensitive to elevated CO2 were more active and move further from shelter in natural coral reef habitat and, as a result, mortality from predation was significantly higher compared with individuals from the same treatment that were tolerant of elevated CO2. If individual variation in CO2 tolerance is heritable, this selection of phenotypes tolerant to elevated CO2 could potentially help mitigate the effects of ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species due to the relatively stable conditions in deep waters for most parameters (e.g. temperature, salinity, oxygen, and pH). To explore the potential for deep-sea hermit crabs (Pagurus tanneri) to acclimate to future ocean acidification, we compared their olfactory and metabolic performance under ambient (pH 7.6) and expected future (pH 7.1) conditions. After exposure to reduced pH waters, metabolic rates of hermit crabs increased transiently and olfactory behaviour was impaired, including antennular flicking and prey detection. Crabs exposed to low pH treatments exhibited higher individual variation for both the speed of antennular flicking and speed of prey detection, than observed in the control pH treatment, suggesting that phenotypic diversity could promote adaptation to future ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic stability and mean intensity of the natural remanent magnetization (NRM) of Leg 73 sediments (Holes 519 to 523) decreases with the age of the sediment. We demonstrate that these variations are linked with physical and chemical changes in the magnetic grains themselves. Alteration of the magnetic component occurs most rapidly shortly after deposition. A significant magnetic alteration over the topmost few meters of the sediments is thought to be the result of oxidation. The modification of the NRM characteristics through the partial dissolution of the carbonate is largely accounted for by the effects of concentraion of the magnetic minerals. We apply the techniques of rock-magnetism and X-ray fluorescence analysis to clarify the physical and chemical mechanisms that affect the magnetic character of the sediment.