31 resultados para Supervisory Control and Data Acquisition (SCADA)
Resumo:
Short-term changes in sea surface conditions controlling the thermohaline circulation in the northern North Atlantic are expected to be especially efficient in perturbing global climate stability. Here we assess past variability of sea surface temperature (SST) in the northeast Atlantic and Norwegian Sea during Marine Isotope Stage (MIS) 2 and, in particular, during the Last Glacial Maximum (LGM). Five high-resolution SST records were established on a meridional transect (53°N-72°N) to trace centennial-scale oscillations in SST and sea-ice cover. We used three independent computational techniques (SIMMAX modern analogue technique, Artificial Neural Networks (ANN), and Revised Analog Method (RAM)) to reconstruct SST from planktonic foraminifer census counts. SIMMAX and ANN reproduced short-term SST oscillations of similar magnitude and absolute levels, while RAM, owing to a restrictive analog selection, appears less suitable for reconstructing "cold end" SST. The SIMMAX and ANN SST reconstructions support the existence of a weak paleo-Norwegian Current during Dansgaard-Oeschger (DO) interstadials number 4, 3, 2, and 1. During the LGM, two warm incursions of 7°C water to occurred in the northern North Atlantic but ended north of the Iceland Faroe Ridge. A rough numerical estimate shows that the near-surface poleward heat transfer from 53° across the Iceland-Faroe Ridge up to to 72° N dropped to less than 60% of the modern value during DO interstadials and to almost zero during DO stadials. Summer sea ice was generally confined to the area north of 70°N and only rarely expanded southward along the margins of continental ice sheets. Internal LGM variability of North Atlantic (>40°N) SST in the GLAMAP 2000 compilation (Sarnthein et al., 2003, doi:10.1029/2002PA000771; Pflaumann et al., 2003, doi:10.1029/2002PA000774) indicates maximum instability in the glacial subpolar gyre and at the Iberian Margin, while in the Nordic Seas, SST was continuously low.
Resumo:
At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.