124 resultados para Stream computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical distribution of meso- and macroplankton was studied in the region of the most sharply pronounced climatic frontal zone between the Gulf Stream and the Labrador current. Hauls with a plankton net BR 113/140 and visual counts of macroplankton from the Mir submersible were used. In the frontal zone a contact occurs between arctic-boreal communities and communities of the North Atlantic subtropical gyre. The community of the North Atlantic subtropical gyre is more mature in terms of succession; many macroplanktonic carnivores-scavengers (mainly shrimps Acanthephyra) develop there and form a ''living network'' feeding on those transported from the north rich arctic-boreal mesoplankton. As a result biomass of shrimps appears to be significantly higher than biomass of their preys. Peculiarities of vertical distribution and population structure of shrimps were analyzed. Data on quantitative vertical distribution of total biomass of meso- and macroplankton and its principal groups, including gelatinous animals (ctenophores, medusas, and siphonophores) were obtained. Variations of the role of different plankton groups with depth were considered; these data enable a conclusion that frontal variations of the community structure embrace the depth range from the surface down to 2000 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel graphical user interface program GrafLab (GRAvity Field LABoratory) for spherical harmonic synthesis (SHS) created in MATLAB®. This program allows to comfortably compute 38 various functionals of the geopotential up to ultra-high degrees and orders of spherical harmonic expansion. For the most difficult part of the SHS, namely the evaluation of the fully normalized associated Legendre functions (fnALFs), we used three different approaches according to required maximum degree: (i) the standard forward column method (up to maximum degree 1800, in some cases up to degree 2190); (ii) the modified forward column method combined with Horner's scheme (up to maximum degree 2700); (iii) the extended-range arithmetic (up to an arbitrary maximum degree). For the maximum degree 2190, the SHS with fnALFs evaluated using the extended-range arithmetic approach takes only approximately 2-3 times longer than its standard arithmetic counterpart, i.e. the standard forward column method. In the GrafLab, the functionals of the geopotential can be evaluated on a regular grid or point-wise, while the input coordinates can either be read from a data file or entered manually. For the computation on a regular grid we decided to apply the lumped coefficients approach due to significant time-efficiency of this method. Furthermore, if a full variance-covariance matrix of spherical harmonic coefficients is available, it is possible to compute the commission errors of the functionals. When computing on a regular grid, the output functionals or their commission errors may be depicted on a map using automatically selected cartographic projection.